【摘 要】
:
表面等离激元纳米天线可以突破光的衍射极限实现纳米尺度光调控,是纳米光电器件的重要组成部分.在经典电磁理论框架下,纳间隙的电场增强随着间隙的减小而增大,同时体系的共振频率也将持续红移.然而,当颗粒间隙减小至亚纳米量级时,电荷的量子隧穿效应,以及金属表面电子云间的重叠将使纳米天线的光学性质偏离经典模型的预期1.
论文部分内容阅读
表面等离激元纳米天线可以突破光的衍射极限实现纳米尺度光调控,是纳米光电器件的重要组成部分.在经典电磁理论框架下,纳间隙的电场增强随着间隙的减小而增大,同时体系的共振频率也将持续红移.然而,当颗粒间隙减小至亚纳米量级时,电荷的量子隧穿效应,以及金属表面电子云间的重叠将使纳米天线的光学性质偏离经典模型的预期1.
其他文献
通过金属超表面结构单元的设计,利用单层超表面实现了太赫兹(THz)波段宽带透射式垂直偏振转换1.该偏振转化的产生主要来源于两个方面,一方面,局部不对称的结构与入射光相互作用,在谐振峰附近产生垂直向偏振分量,通过局域表面等离子谐振(LSPs)的近场相干相消,使得与入射光平行方向的出射光相互抑制不能传到远场,从而仅保留垂直向偏振分量;另一方面,整体对称性的设计能够使得激发的LSPs同样具有对称性质,从
超表面(Metasurface)因其独特的物理特性及其对电磁波振幅、相位的灵活调控能力,使其在光束控制、隐身技术等诸多方面具有诱人的应用前景。通过设计特定微纳结构来实现0-2π范围内任意电磁相位分布,进而根据惠更斯原理实现任意波前的调控,在计算全息方面吸引了很多人的研究兴趣。
圆锥曲线是数学中一种非常古老的曲线,并广泛应用于各种领域,如天体物理,工程,建筑等方面。然而这种曲线的自旋光学特性却未有人涉及到。我们利用狭缝的几何相位,并将它们按照一定的方式排列成椭圆和双曲线的人工超表面。我们发现对于椭圆超表面,不同自旋的光子能够分离,并分别聚焦在椭圆的两个焦点上,这就是光自旋霍尔效应。而对于双曲线的超表面,我们发现这种结构有自旋选择的特点,只可将一种的自旋光子同时聚焦在双曲线
半导体量子点由于其具有类似原子的特性被作为固态量子比特的载体受到人们的广泛关注,本报告将对单量子点中的电荷,自旋,波函数以及与微腔光场的相互作用的调控,讨论单量子体系的光辐射及其在量子信息处理中的应用。我们首先将单个量子点放到肖特基结的绝缘层中,通过电场精确控制量子点中的电荷数量,实现了不同带电激子态光辐射。
我们设计和使用超螺旋等离子透镜结构利用显微成像、傅里叶变换和数值模拟验证的方法开展了对其表面等离激元场中矢量涡旋光场特点及形成机理的研究。实验上,分别使用右旋圆偏振光和左旋圆偏振光对右手超螺旋结构和左手超螺旋结构照射,利用带有显微物镜的马赫曾德尔干涉仪对SPP场进行成像并利用偏振片提取分量。通过对SPP场与参考光的干涉条纹做傅里叶变换,分别得到SPP总场及其X分量、Y分量的振幅和相位分布图样。在结
矢量涡旋光场是偏振态在空间上非均匀分布,相位在空间上呈螺旋状分布的光场。由于矢量涡旋光场的相位和偏振态在空间上奇异的的分布特性,因此矢量涡旋光场在光操纵、表面等离子体基元、超衍射、非线性光学等领域具有重要的应用价值。本文是基于空间光调制器(SLM)高效生成矢量涡旋光场。液晶SLM的工作原理是基于液晶分子的双折射效应,而液晶分子的光轴方向会随加载的电压大小而在某一平面内变化,即当某一偏振方向的入射光
分形是在1967年由数学家芒德勃罗(B.B.Mandelbrot)提出的几何概念[1],其广泛存在于自然界之中,并且已经在物理学、化学、生物学、材料学等多个领域拥有了广泛的应用.近年来在光学领域,激光偏振态的调控成为了一个研究的热点[2],偏振态空间变化的矢量光场在光学超衍射极限、光学微操纵和非线性光学等领域拥有众多的应用.
自发参量下转换产生的纠缠双光子对(信号光和闲置光)具有很好的空间和时间关联性。把一个待成像的物体放置在信号光一路,并用一个不具有空间分辨率的单像素点探测器(D1)收集所有经过物体的信号光。闲置光子不用经过物体,直接用一个具有空间分辨率的探测器(D2)来探测。把探测器D1和D2的电信号做符合测量,即可得到物体的像。
我们将1560.50nm激光单次穿过两块PPMgO:LN晶体通过级联倍频产生780.25nm激光.780.25nm激光对准铷原子的D2线,可用于铷原子的激光冷却与俘获、相干操控、高分辨光谱等实验.当输入1560.50nm激光的功率为13.15W时,可以得到3.53W的780.25nm倍频光,倍频效率为26.8%.然后将所获得的780.25nm倍频激光与残余的1560.50nm基频激光单次穿过和频晶