The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells

来源 :第七届新型太阳能电池材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:swpixl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Organic spacer cations in layered 2D(A1)2(A2)n-1BnX3n+1(where A1 is an organic cation acting as a spacer between the perovskite layers,A2 is a monovalent cation,e.g.,Cs+,CH3NH3+,CH(NH2)2+)perovskite materials improve the long-term stability of the resulting solar cells,but hamper their power conversion efficiency due to poor carrier generation/transportation.
其他文献
界面钝化是消除界面缺陷并获得高性能钙钛矿太阳能电池的有效方法,而钝化效果的稳定性是器件稳定性工程的新关注点。在此,我们证明了三苄基氧化磷是一种出色的配位分子材料,通过磷氧双键-钙钛矿库仑相互作用和分子间π-π共轭作用,可以稳定地钝化钙钛矿界面,从而实现高效、稳定的钙钛矿太阳能电池。
界面钝化在降低钙钛矿光伏活性层和电荷传输层的表面界面缺陷方面起着重要作用[1-2]。其中氧化铝(Al2O3)作为一种具有绝缘性,良好电化学性能和宽禁带的优秀钝化材料而备受青睐。
钙钛矿太阳能电池具有高效、低成本、可与其他光伏电池叠层等众多优点,受到光伏市场的热切关注。为进一步降低成本,解决器件稳定性不佳等问题,使用无机材料替代有机材料制备全无机电荷传输层逐渐成为热点[1-2]。
我们设计了一种三明治结构的电子传输层(ETL)MgO/SnO2/EA.在FTO 和SnO2间引入MgO 层可以增强电子传输并阻挡空穴,能有效的提升器件的VOC.而乙醇胺(EA)在ETL 上层的引入可以显着降低SnO2 的氧空位,并抑制深层缺陷态的形成,有效提高器件的连续照明稳定性.
钙钛矿太阳能电池价格低廉,可溶液制备和便于采用等特点,使其大规模、低成本制造成为可能,由此使它成为目前光伏领域研究的热点之一[1]。然而电子传输层和钙钛矿层之间存在着界面缺陷,使载流子发生非辐射复合,从而降低器件的稳定性和效率[2]。
The poor stability of metal-halide perovskites(MHPs)under ambient conditions remains the major challenge.
氧化镍(NiOx)作为一种新型的钙钛矿太阳能电池的空穴传输层,其禁带宽度为3.6-4.0 eV 提供了高的光学透过率,较深的价带能级(5.2-5.4 eV)可以高度匹配钙钛矿的价带能级(5.4 eV)保证了空穴载流子的有效传输和高的导带能级有效阻挡电子的反向传输,同时NiOx 优异的化学稳定性使它适合作为倒置平面钙钛矿太阳能电池的空穴传输层材料(图a).
Fluorene-based conjugated polyelectrolytes(CPEs)are organic semiconductors containing a π-delocalized backbone along with functional pendant groups.
The moisture-induced instability of metal halide perovskites is one of the major challenges for perovskite optoelectronic devices to meet the commercial requirements.
有机-无机杂化钙钛矿的准二维化可以抑制钙钛矿薄膜中的离子迁移,极大地提高了其本征的材料结构稳定性和湿稳定性。然而,有机大阳离子的量子阱和介电限域效应使得准二维层状钙钛矿有着更大的带隙和更大的激子结合能;同时,有机大阳离子的导电性差的特点也使得准二维层状钙钛矿薄膜载流子传输能力受到了很大的限制。