锂离子电池Li4Ti5O12负极材料的热力学稳定性

来源 :第十八次全国电化学大会 | 被引量 : 0次 | 上传用户:zhoukang3201
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
尖晶石Li4Ti5O12是一种"零应变"插入半导体材料,它以优良的循环性能和稳定的结构而成为备受关注的动力锂离子电池负极材料[1,2].但是它存在电子导电率和离子电导率低的缺点,在大电流充放电时容量衰减快,倍率性能较差,限制了在高功率锂离子电池中的应用.在动力电池这一全球瞩目的领域,锂离子电池的高倍率工作特性是决定其能否获得商业化应用的关键因素之一.而电极材料的热力学稳定性直接影响了电极材料在循环过程中的结构稳定性及安全性,本项目釆用基于第一性原理计算的方法对Li4Ti5Ol2的热力学性质进行计算.
其他文献
By introducing other raw materials(SiO2, Al2O3, CaO) into the red mud ,all above materials were melted into Fe2O3-CaO-Al2O3-SiO2 system glasses.On the basis of 17.2Fe2O3-5.7CaO-18.2Al2O3-50SiO2-5.9Na2
For these recent years, piezoelectric energy harvesting has been a very popular research topic.Piezoelectric materials are used to harvest wasted mechanical energy from ambient environment and supply
The elastoplastic properties of TiC particle reinforced titanium matrix composites (TiC/TMCs) at high temperatures were analyzed by considering interfacial debonding.Based on Eshelbys equivalent inclu
Amorphous microwires have attracted growing interest in recent years due to their outstanding soft magnetic properties.The giant-magnetoimpedance (GMI) is the most attractive features derived from mic
会议
Using the plasmonic metasurface, we have deigned and purposed a high efficient solar ray absorber by tailoring the thickness of the metallic arrays.The geometric dependent local surface plasmon and co
会议
在海洋工程中,海水中盐类侵蚀及其他恶劣条件容易导致硅酸盐水泥混凝土劣化。碱激发矿渣是有望替代硅酸盐水泥的理想胶凝材料之一。本文研究人工海水及自来水作为碱激发矿渣拌合水对水化产物、微观结构及宏观性能的影响。与自来水相比,海水作为拌合水对碱激发矿渣凝结时间、强度无明显影响;人工海水对碱激发矿渣水化产物的生成有促进作用,增加其结合水量。此外,海水中的盐类使其水化产物趋向于晶体化。人工海水对碱激发矿渣基体
碱激发矿渣(AAS)中较大的干燥收缩是限制其在土木工程中得到广泛应用的因素之一.研究发现AAS的干缩主要受到其内部1.25nm到25nm大小的孔径的影响.本研究主要目的是通过加入纳米TiO2和偏高岭土来改善AAS的微结构.研究中使用了FTIR,SEM和MIP这三种测试方法对AAS的水化产物和微结构进行了表征.
织物和短切纤维复合增强是一种高效、新颖的增强技术,能大幅提升基体的弯曲性能和韧性。本文研究了不同温度和保温时间对玄武岩织物和钢纤维复合增强碱激发矿渣板受高温作用后力学性能与微结构的影响。研究表明其弯曲性能和质量损失在高温作用后大幅下降,尤其经过800℃的高温作用后,试件的初裂弯曲强度和极限弯曲强度仅为对照组的10%-19%。随着保温时间的延长,板的弯曲强度和韧性下降较快。通过对基体X射线衍射、扫描
When the battery is charged a cutoff voltage up to 4.2 V,only half lithium can be extracted from LiCoO2 to Li0.5CoO2.Thus,it is a well-accepted strategy to charge LiCoO2 cathode beyond 4.2 V,in order
会议
Lithium ion batteries(LIBs) have emerged as the most important power sources for portable electronics.However,in order to expand the applications of the LIBs to electric vehicles,higher energy density
会议