LONG-TIME PROPERTIES OF FINITE ELEMENTS FOR HAMILTONIAN SYSTEM AND THE PROOF OF FENGS CONJECTURE

来源 :第三届国际微分方程的数值分析会议(3rd International Conference on Numerical A | 被引量 : 0次 | 上传用户:henauvic
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Symplectic algorithms and finite element methods(FEM) for Hamiltonian system are summarized,and three conjectures on long-time deviations of computational orbit,energy and symplecticity are proposed.This paper emphasizes the continuous nite element method and its energy conservation,proposes the basic assumption A on H(z) and derives three uniform bounds.It is proved that long-time deviation of nite element orbit grows linearly with time(Fengs conjecture),based on superconvergence result for short time and a new approach.Numerical experiments verify the validity of three conjectures.
其他文献
会议
会议
会议
会议
会议
会议