功能纳米纤维材料及其在环境领域的应用

来源 :2012年全国高分子材料科学与工程研讨会 | 被引量 : 0次 | 上传用户:ciancomjy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  近年来,通过静电纺丝技术制备纳米纤维材料已成为材料科学领域最重要的学术与技术活动之一。静电纺丝以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备功能纳米纤维材料的主要途径。目前,利用静电纺丝技术不仅能实现多种纳米纤维材料包括聚合物、无机物、聚合物/聚合物复合物、聚合物/无机物复合物以及无机物/无机物复合物等的构筑,而且可以实现纤维多级粗糙结构、堆积密度、纤维直径、比表面积、连通性等结构特性的精细调控。各种各样的静电纺纳米纤维材料经过发展、研究和商业化,已被广泛应用于环境领域的各个方面。本报告对针对研究者近年来在静电纺纳米纤维可控制备及环境领域应用的研究工作进行简要综述。通过优化纺丝工艺如改变喷头结构、控制纺丝环境参数、调节纺丝原液特性等,获得了包括多孔有机纳米纤维、多孔陶瓷纳米纤维、多孔碳纳米纤维、仿生形貌纳米纤维、多芯电缆状纳米纤维、二维纳米蛛网等形貌结构丰富多样的纳米纤维材料,并将其成功应用于自清洁、石英晶体微天平传感器、颜色传感器、空气过滤、高温过滤、水过滤、水体浮油处理、染料磁性吸附等领域,从而可为许多环保难题的解决提供新的方向。
其他文献
本文首次以PVAc为基体,通过熔融混合的方式与有机小分子受阻酚进行杂化复合,研究杂化作用对PVAc阻尼性能的影响,且续合DSC和红外等表征手段分析影响性能的原因。结果,通过红外测试证实了受阻酚与PVAc间存在分子间氢键相互作用,分子间氢键的存在不仅使杂化体系阻尼性能提高,同时也是受阻酚对杂化体系产生增塑作用的原因之一。本研究改善了制约聚醋酸乙烯酯作为阻尼材料使用的不足之处,实现了热塑性塑料与受阻酚
随着组织工程的发展,利用细胞片(cell sheet)构筑三维组织已成为制造人工器官的重要发展方向之一。现行的细胞培养是以聚苯乙烯培养皿(TCPS)表面为基质进行贴壁生长,然后用胰酶(trypsin)进行细胞消化、分散,得到单个的细胞,不适合组织工程对细胞片的要求。本工作研究制备了能够促进细胞粘附、增殖,又可以使铺满的细胞片快速自发分离的超拉伸高韧性聚合物-锂藻土(Laponite)温敏性纳米复合
生命体实际上是一个典型的多层次手性体系。作为生命体的基本构成单元,天然生物分子通常都是手性分子,并表现出高度的手性选择性。这些手性分子通过化学键或氢键及疏水相互作用等组装形成具有具有特殊立体构象和功能的生物大分子,这些生物大分子进一步装配形成细胞器、细胞,乃至组织和器官等更高级的生命体存在形式。相应的,生命体的宏观形态也表现出独特的非对称特征,并且许多生物及生理过程也与分子的手性密切相关。这不仅是
二硫键在循环过程以及细胞外普通环境中能稳定存在,在还原性条件下能被破坏而使材料产生响应。在聚合物主链或侧链中引入二硫键制备氧化还原响应的聚合物胶束已被广泛研究。二硫键与硫醇之间的交换反应相对缓慢并且不可控,因此需要制备一种快速可控的氧化还原响应聚合物胶束体系。高强度聚焦超声(HIFU)作为一种外部治疗手段已被广泛用于肿瘤治疗。使用HIFU作为外部刺激实现药物的控释有着巨大的发展前景。本文制备了主链
生物材料表界面的研究内容主要涉及材料表面与各种生物单元(蛋白质、核酸、细胞等)之间的相互作用。研究这些相互作用的机理并实现其调控不但具有重要的理论价值,还密切关系到生物材料最终能否被成功应用。材料表面主要通过化学组成和拓扑结构两大表面性质来影响其与生物分子以及细胞之间的相互作用。本文研究重点正是通过调节这两种因素来实现对生物分子以及细胞在材料表面行为的调控。首先,通过表面化学改性实现对蛋白质吸附以
本研究设计、合成具备超低体积收缩或者抗菌性能的新型牙科复合材料。低体积收缩材料方面,通过在树脂体系中添加少量的气泡引发剂,在光照聚合的同时,由于聚合时产生的热量或者光照活化,添加剂发生分解,原位产生气泡,从而在复合材料中形成纳米尺度的空洞,补偿了单体聚合造成的体积收缩。研究发现,只需要添加很少量的气泡引发剂,体积收缩就可以从2%降到几乎为零,而复合材料的其他性质(力学性质)却没有受到显著影响。抗菌
本文发展了双网络水凝胶思想,首先合成了氧化硅纳米颗粒,并在纳米颗粒表面接枝双键,将这些纳米颗粒与第一单体APMS共聚合,得到纳米复合网络结构,然后将该第一网络凝胶浸入第二网络单体AAm水溶液中,充分溶胀后引发聚合,得到纳米复合双网络水凝胶,该双网络水凝胶可耐受压缩应变达98%仍不破坏,压力撤除后,仍能恢复原状。作为对照,将表面未修饰的纳米氧化硅与第一网络混合,然后制成双网络水凝胶。该材料可能在关节
本实验室通过物理方法制备了天然丝素粉体,保留了丝素纤维良好的生物相容性,初步试验证实制备的天然丝素粉体能够提高聚氨酯材料的体内生物相容性。用作小口径人造血管的材料不仅需要良好的体内生物相容性,还需要良好的细胞相容性。本文针对制备的聚氨酯/丝素复合膜的细胞相容性进行了研究。
小口径人工血管的移植易出现由血栓引起的再狭窄等问题,采用组织工程的方法可以构建新型生物降解性人工血管,在完善血管内皮化的同时促进自身血管再生。电纺纤维膜常用作人工血管材料,而同轴电纺和乳液电纺可用来负载生物活性物质。本文研究了电纺纤维膜负载和控制释放两种生长因子的方法,即同时负载血管内皮生长因子(VEGF)和血小板衍生生长因子(PDGF)的方法,为小口径人工血管替代物制备提供新途径。
本课题选用生物相容性良好的PLGA多孔微球为药物载体,BSA作为模型蛋白,用改良的双乳液溶剂挥发法制备了不同孔径大小的多孔微球(孔径0.6-2.2μm,Fig 1)。研究了微球孔结构与BSA释放之间的关系。平均孔径大的微球(比表面积大,有利于蛋白扩散)比小孔径的微球释放速度快(释放量30-65%根据孔结构的不同而变化,Fig 2)。无孔微球释放速度最慢。多孔微球的尺寸(20-70μm)可以通过改变