【摘 要】
:
随着含H2S和CO2高酸性油气田的开发,因腐蚀而引起的石油装备的失效问题日益为人们所关注。多年来,人们为揭示材料尤其是钢铁材料在高酸性油气田环境中的腐蚀行为和机理,进行了大量的研究工作。为确保高酸性油气田的安全开发,需要选用具有优良的耐蚀性、高温性能,并且兼有很好的力学性能和机械加工性能的镍基合金作为油套管和井口装置用材,例如选用高Ni、Cr含量的镍基合金UNS N08825作为油套管。笔者研究了
【机 构】
:
中国石油大学(北京)材料系,北京,102249
【出 处】
:
2009年第十五次全国电化学学术会议
论文部分内容阅读
随着含H2S和CO2高酸性油气田的开发,因腐蚀而引起的石油装备的失效问题日益为人们所关注。多年来,人们为揭示材料尤其是钢铁材料在高酸性油气田环境中的腐蚀行为和机理,进行了大量的研究工作。为确保高酸性油气田的安全开发,需要选用具有优良的耐蚀性、高温性能,并且兼有很好的力学性能和机械加工性能的镍基合金作为油套管和井口装置用材,例如选用高Ni、Cr含量的镍基合金UNS N08825作为油套管。笔者研究了镍基合金UNS N08825在高含H2S/CO2环境中腐蚀后的电化学特征。
其他文献
离子液体是指全部由离子组成,在室温或相邻温度下呈现液态的物质,又称为室温离子液体或室温熔融盐,其具有不可燃、蒸汽压低、电化学窗口宽、电导率高、无污染等优点,有望取代传统有机电解液解决锂离子电池安全性问题。本文制备了1-甲基-3-丁基咪唑二(三氟甲基磺酰)亚胺(BMITFSI)/二(三氟甲基磺酰)亚胺(LiTFSI)、1-甲基-3-乙基咪唑二(三氟甲基磺酰)亚胺(EMITFSI)/LiTFSI两种新
锂离子电池正极材料Li2MnSiO4 因具有安全性能好,原料价廉,理论容量高达333mAh/g等优点而成为当前锂离子电池领域的研究热点。已见报道的Li2MnSiO4 正极材料的放电容量可达209mAh/g,掺杂铁后,放电容量可提高到214mAh/g,但是仍然不足理论容量的65%,材料的实际容量仍然有待提高。本文采用液相法结合高温煅烧,对材料进行包覆碳和掺杂镁复合改性,合成了Li2Mn0.8Mg0.
采用脉冲激光沉积法在不锈钢基片上制备了纳米结构的氟化银薄膜. 充放电测试显示该薄膜具有380 mAh·g-1的首次放电容量. 循环伏安曲线显示在1.9V和2.2V处出现了一对可逆的氧化还原峰. X射线衍射表明沉积得到的是多种价态混合的氟化银薄膜. 该薄膜较高的放电平台和良好的可逆性显示了它作为薄膜电池正极材料的潜力.
大约一个世纪前Paul Ehrlich提出靶向治疗的概念,磁微球作为靶向药物载体有利于提高药物疗效,降低药物的毒副作用。磁靶向给药系统主要由磁性材料、骨架材料和效应药物等组成。纳米γ-Fe2O3粒径小,磁响应好,可用作磁导向材料,具有安全性和靶向性。聚苯胺(PANI)具有生物相容性、结构多样性、独特的掺杂机制、良好的电学性能和环境稳定性等优点,具有广泛的应用潜力。本实验根据Tang的合成方法制得γ
由于肿瘤细胞的过度增殖和对正常组织的侵犯及转移,癌症已成为严重威胁人类健康的疾病。目前,临床上治疗肿瘤的药物虽然能抑制部分肿瘤的进一步恶化,但由于导向作用差、副作用明显等限制了其应用。磁靶向药物因具有合成相对容易和易于调控等优势,使其具有实际应用的前景。本文用醋酸甲地孕酮(MA)对由聚苯胺(PANI)包裹的γ-Fe2O3(γ-Fe2O3/PANI)进行修饰,制备出具有超顺磁性的γ-Fe2O3/PA
铁磁性材料的应用一直以无机磁性材料为主,但无机铁磁性材料的固有不足使其应用受到一定的限制。万梅香教授等为克服无机磁性材料的不足,采用无机铁磁性材料和导电高分子复合的方法获得铁磁性导电聚苯胺等复合材料。鉴于铁磁导电聚合物具有结构多样性、密度低、易加工等特点,为屏蔽材料、传感器的设计和磁靶向药物等研发提供了新的途径。本文介绍在外磁场下合成聚苯胺-钴(PANI-Co)的性能。
超大规模集成电路(VLSI)互连工艺中铜的电沉积在国内外都已经有大量的研究,研究表明为了实现铜在芯片亚微米级刻槽中的超等角填充,添加剂是很关键的.目前采用的有机添加剂主要包括促进剂,如聚二硫二丙烷磺酸钠(SPS)或者3-巯基-1-丙烷磺酸钠(MPS),和抑制剂,如聚乙二醇(PEG);有的还包含少量的整平剂.促进剂在铜的电沉积中有着很重要的作用,国外对于促进剂MPS对铜电沉积的影响作用已经有一定的研
氧氟沙星是全合成的喹诺酮类广谱高效抗菌新药,具有较强的广谱抗菌作用。化学修饰碳糊电极是化学修饰电极中的一种,它继承了碳糊电极的全部优点,同时,由于特效性修饰剂的引入,使其灵敏度,选择性进一步提高,而且还具备了修饰电极的基本特征,可以认为化学修饰碳糊电极是把分离,富集和选择性测定三者合而为一的理想体系。本文描述了用紫外光谱、分子荧光光谱、电化学三种方法对氧氟沙星进行了光谱及电化学性质研究,实验考察了
与传统电池相比,锂离子电池具有电压高,能量密度高,工作温度范围宽,使用寿命长等优点。使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为目前广为关注的研究热点。电解质作为锂离子电池的重要组成部分具有不可忽视的重要作用。常用的有机液体电解质由于其存在易泄露、易燃易爆、使电极发生分解反应等缺点,使得锂离子电池的安全性及寿命受到严峻挑战。而聚合物电解质可以很好地解决锂离子电
可再生燃料电池的技术挑战之一是开发高效、稳定的双功能氧电极催化剂。对于酸性介质中氧气的析出反应,目前已知的最好的电催化剂有Ru、Ir及其氧化物或混合氧化物。这些氧化物是具有金红石相结构的金属导体(电导率~104S.cm-1)。而诸如Ni、Co、Mn及其它过渡金属氧化物由于在酸性介质中发生腐蚀,其阳离子与硫酸根结合会对质子交换膜产生毒化作用而使膜的电导率下降,并能与Pt阴极的活性位点产生强烈吸附而使