【摘 要】
:
本文选用本实验室研制的纳米晶PVC 为基体,采用复合材料模压工艺制备了PZT/PVC 系压电复合材料,系统地研究了成型温度和体积分数对复合材料的结构及介电、压电和铁电性能的影响。
【机 构】
:
武汉理工大学材料科学与工程学院,武汉 430070;山东理工大学材料科学与工程学院,淄博 255010
【出 处】
:
2005年全国高分子学术论文报告会
论文部分内容阅读
本文选用本实验室研制的纳米晶PVC 为基体,采用复合材料模压工艺制备了PZT/PVC 系压电复合材料,系统地研究了成型温度和体积分数对复合材料的结构及介电、压电和铁电性能的影响。
其他文献
大量实验现象证实,导电聚合物聚苯胺(PANI)对各种金属和合金具有优异的防腐性能。但对其防腐机理,至今还没有达成统一认识。电化学阻抗谱( Electrochemical Impedance Spectroscopy, EIS )是研究传统有机涂层涂布金属体系腐蚀行为的一项强有力的技术。这项技术也被用来研究PANI 涂层的防腐性能和机理。毫无疑问,弄清PANI 涂层/金属体系的电化学阻抗谱特征及等效
环氧树脂是一种重要的高分子材料,由于其具有优良的物理性能、电气性能、耐腐蚀性能、耐热性能和粘接性能等,使其在航空航天、国防军工、电子电器等领域得到广泛应用,而在其分子链或固化体系中引入功能性结构单元将赋予这种传统树脂以新的如光、电、磁等性能,这样的研究工作具有重要的应用价值和学术意义。二茂铁类衍生物及相应聚合物由于其特殊的结构而具有很好电催化活性和电化学性能1, 2 ,Michael 等3 合成了
ACR是丙烯酸酯类树脂 (Acrylic resin)的缩写,ACR 抗冲击改性剂属于"核/壳" 结构共聚物,具有抗冲效率高、耐侯性好、加工适应性强等优点,是PVC理想的抗冲改性助剂。本课题旨在以国外应用最广泛的产品KM355 等为参考,在前期工作的基础上,进行完善、加深和拓宽。进一步探讨三步法的合成工艺,在适宜的核/壳比范围内通过加入第三单体合成新组成的ACR 样品;利用种子乳液法控制乳胶粒的粒
在纯水介质中微波辐射作用下,研究了PET 的粒度对其解聚率的影响。研究结果表明:PET 的粒度对PET 解聚率的影响具有同非微波辐射反应相同的规律,即随着PET 粒度的增大,解聚率随之减小,这一实验结果与微波的热效应观点相符合。
环氧树脂具有附着力强、粘结强度高、耐腐蚀等优异的性能,而环氧树脂水乳液不含挥发性有机物(VOC ),用于改性水泥基复合材料可以减少环境污染、降低施工难度,极大地提高劳动效率,因而其已成为水泥基复合材料改性的一种重要聚合物。本文对环氧乳液改性水泥砂浆的力学性能进行了研究.
长玻璃纤维增强热塑性复合材料常用的方法有溶液法、熔融法、悬浮法等。溶液法制得的产品耐溶剂性差,熔融法由于热塑性树脂熔体粘度大,对玻璃纤维浸渍效果差,悬浮法则克服了以上两种方法的缺点。本文就水悬浮法制备LGF/PVC复合材料拉挤成型工艺进行了研究。
聚丙烯酸酯树脂(ACR )作为聚氯乙烯增韧改性剂的研究日臻成熟,在以前的报道中,无论是同氯乙烯进行化学接枝改性还是与聚氯乙烯进行物理共混改性[1-3],ACR 均是一种良好的增韧剂,并且国内外已有商品树脂可供使用。在制备ACR 树脂时,通常采用PMMA作为ACR 壳层聚合物,主要是因为PMMA 与PVC 之间具有良好的相容性[4,5]。但是,对于作为相容剂的PMMA 来说,研究其分子量对共混物增韧
近年来,随着人类对环境问题的重视,世界涂料的发展方向和产品结构都发生了根本变化,朝着省资源、无污染和高性能方向发展,相继出现了水性涂料、粉末涂料、辐射固化涂料、高固体份涂料等环保型涂料。乳液聚合是制备水性涂料基体最重要的手段。目前国内外普遍采用丙烯酸酯树脂乳液作为水性涂料的基体,但是热塑性丙烯酸酯涂层的耐候性不好,并且高温易变粘,低温易变脆,如采用有机硅进行改性可以提高丙烯酸树脂的耐候性,户外耐久
雷达波吸收材料(RAM )作为隐身材料受到科学界和高科技领域的高度重视,理想的RAM 应是结构稳定、强吸收、宽频带和密度小。通常,RAM 由基体材料(粘合剂)和电磁损耗材料(吸波剂)组成。显然,RAM 中关键作用是吸波剂的性能。目前,广泛应用的吸波剂主要是铁氧体,多晶纤维,纳米材料和导电高分子,但单一吸波材料存在吸波频带窄等问题,难以适应飞行器的宽频应用。虽然,常用多层电磁复合吸波材料达到展宽吸收
1978 年,加拿大的K.O.Hill 等人在研究掺锗光纤的非线性效应的实验中首次观察到光纤的光敏性和由此形成的光纤光栅。光纤光栅实现的物理原理是利用光纤在紫外光照射下产生的光致折射率改变效应,在纤芯上形成周期性的折射率调制,从而对入射光波相位匹配的频率产生相干反射(布拉格光栅)。典型的光纤光栅可以在0.1 到几十纳米的带宽内完成特定波长光的选择性反射,反射率可接近100 ﹪。光纤光栅的这一重要的