使用新型荧光和MS敏感标记试剂快速制备游离N-糖用于HILIC分析

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:wuyikun2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  目的:开发一种集灵敏度、样品制备通量、操作简单性于一体的游离N-糖制备方法,用于HILIC分析,并评估其性能。方法:基于合理设计,合成了一种可以协助进行N-糖分析的新型标记试剂,开发出一种优化的 “三步法”N-糖样品制备工作流程,并使用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)对快速糖基释放过程的效果进行了评估。结果:大约10 min内完成糖蛋白的糖基释放并生成N-糖胺,再与新型RapiFluor-MS试剂快速反应,5 min即可被标记上由高效荧光基团以及能提高荧光、MS检测灵敏度的强碱性叔胺基团组成的标记物。用时不超过15 min,通过μElution HILIC SPE将所得的RapiFluor-MS标记糖基从反应副产物中提取出来,该法能够对多种糖基(从中性到四唾液酸化蛋白糖基)进行定量回收。结论:GlycoWorks RapiFluor Fluor-MS N-糖分析试剂盒克服了传统2-AB、Instant AB及PCA方法的缺点,可实现前所未有的蛋白糖基检测灵敏度,同时提高了N-糖样品的制备通量。
其他文献
过氧化氢(H2O2)作为一种活性氧(ROS)物质,能够调节脑内氧化能力,是神经元之间、神经元与胶质细胞间用于沟通的扩散性信使分子,同时在突触传导和可塑性方面发挥重要作用[1]。研究鼠脑中H2O2 的浓度变化,对于探究活性氧物质和信号传输功能具有重要的意义[2]。
生命科学研究已经进入单细胞时代,这对单细胞水平的分析方法提出了更高的要求1,2.质谱因其无需标记的特点、以及多组分分析的能力成为了单细胞分析的重要方法,已发展出如直流脉冲电喷雾质谱、液滴微萃取电喷雾质谱、原位取样纳喷雾质谱、微尺度基质沉积的基质辅助激光解吸电离质谱、毛细管电泳质谱联用技术等单细胞分析技术3-5.
电极-酶界面的异相电子转移是影响酶型生物电化学传感器性能的重要因素之一。根据电子传递方式,电极-酶界面的异相电子转移可分为两类:介导电子转移(MET)和直接电子转移(DET)。基于MET的电化学传感中,具有电化学活性的外源媒介小分子被添加或修饰至电极表面,在电极与酶活性中心之间进行远距离电子传递。基于DET的电化学传感中,酶自身电化学活性中心与电极表面的距离被人为缩短,从而实现短距离电子隧穿。
精确区分具有高度相似序列的microRNAs(miRNAs)能够有效促进疾病的筛选和早期诊断。本文设计了锁核酸(locked nucleic acid,LNA)修饰的探针并用来特异性识别miRNAs,该探针与靶miRNAs结合后在纳米通道中能够产生独特的超长阻断电流,该信号可以用来区分相似miRNAs、甚至单碱基错配。不仅如此,纳米通道技术与锁核酸修饰技术的结合还可以特异性检测血清样品中的靶标。该
ATP不仅是重要的生物能量物质,更是脑内神经传递重要的信使递质。对ATP分子的研究是脑科学中重要的一环,但同时也是检测的难点之一。核酸适配体广泛应用于生物单元的识别,ATP核酸适配体能够特异性识别A碱基,但是A碱基并非ATP分子特有,同样ADP和AMP分子中也具有等量形式并被ATP核酸适配体识别。
单分子检测可以有效地弥补在宏观体系中被平均掉的一些信息,近20 年来已经成为生物、物理、化学等领域的研究热点。该技术可以提供丰富的动力学和统计学信息,跟踪观测化学反应途径,研究生物分子的分子构象及相互作用等。目前,最常见的单分子检测技术主要依赖于光学(如,荧光)和力转导(如,光镊),而电化学检测作为一种补充手段较少被报道。相对于广泛采用的光学方法,单分子电化学检测具有免标记、成本低、无光漂等优点。
ATP、ADP和AMP(ANPs)及其互相转换直接控制着生命过程,并且它们的体内含量与许多疾病相关。目前单分子水平同时检测ATP、ADP和AMP未见报道,且具有挑战性。我们依据线粒体ADP/ATP载体蛋白的结构和特点,设计并合成了与其结构相似的人工仿生受体,并组装在蛋白质纳米孔中,构建了可同时识别和检测ATP、ADP和AMP的单分子传感器。
染色成像是研究生物组织结构的重要手段,染色的生物组织切片提供了其大量的结构信息。然而,关于染色生物组织结构的光学响应研究依然停留在传统偏光显微镜的阶段,对于这类具有光学活性、光学吸收、各向异性、非均一结构材料体系的光学分析是材料结构分析的重要组成部分。穆勒矩阵偏光分析作为一种新颖独特的光学分析手段,可同时提供样品所有的偏光信息,灵敏度高,信息量大,对于复杂光学体系的研究优势显著[1]。在本工作中,
:将胃蛋白酶键合的毛细管有机聚合物整体柱与前沿分析法相结合,同时对克伦特罗的两个对映体与人血清白蛋白(HSA)的相互作用情况进行了考察.经过优化后建立的电色谱条件为:胃蛋白酶修饰的聚(甲基丙烯酸环氧丙酯-乙二醇二甲基丙烯酸酯)毛细管整体柱作为分离通道(32cm×75μm,有效长度22cm),运行缓冲液为pH 5.5 的15mmol/L醋酸铵,样品溶剂为pH 7.4的50mmol/L醋酸铵,运行电压
本文构建了一种基于浓差电池原理的传感器,并用于葡萄糖浓度的定量检测。该传感器由两个相同的玻碳电极构成,两个电极分别与两个通过nafion 膜进行离子交换的电化学池接触。两个电化学池中含有等量的电活性物质,但仅其中一边反应池中含有葡萄糖氧化酶。检测过程中,两边同时加入待测葡萄糖后,仅含酶反应池中的葡萄糖被氧化,改变了反应池中电活性物质浓度,而另一边不变,从而改变两个电极之间的电信号。通过检测得到的电