Trophic transfer of nanoparticles in food chain:A review

来源 :全国环境纳米技术及生物效应学术研讨会 | 被引量 : 0次 | 上传用户:qzyss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Nanoparticles from the rapidly increasing number of consumer products have led to concerns about the health risks and environmental impacts of such nanosized materials.One of the most significant and currently not well-understood risks is their potential transfer and magnification in food chains.
其他文献
  随着抗生素等化学药物的大量使用,由耐药性引起的微生物变异种群越来越多,因此,高效、广谱且不易产生耐药性的金属杀菌剂成为了关注重点。多年的实践表明,银具有持久的抗菌性
  氧化石墨烯(Graphene oxide)因其独特的理化特性,如表面积高、导电性能好、化学稳定性强等,在生物医药、光电和能源领域内被广泛研究,其应用前景也受到高度关注。[1] 同时,氧
  已有研究显示,人工纳米材料可以通过食物链传递,但对其环境生态毒性了解较少。本研究利用大肠杆菌与秀丽隐杆线虫构成的食物链模型,对25 nm、75 nm、
  纳米氧化锌(nZnO)被广泛应用于化妆品、纤维材料、传感器、橡胶等多个领域,大量的生产、运输和使用不可避免地会使其进入到环境当中,引发了人们对纳米氧化锌毒性特别是生态
  纳米材料因具有一系列特殊性质而被广泛应用于工业和生活中各个领域,它们在生产、使用和处置过程中不可避免地会进入到环境中。研究认为释放到环境中的纳米颗粒本身对生物
  纳米二氧化钛(TiO2 NPs)是目前使用最广泛的纳米材料之一.TiO2 NPs 进入环境(浓度0.1-1000 ppm)后[1]可能会对植物、微生物等产生毒性效应.本文以水稻为受试植物,以生物量
  金属纳米颗粒,尤其是纳米银颗粒由于具有很高的表面活性、表面能以及催化性能等特点,近些年来,随着制备技术的大力发展,纳米银已经广泛应用于众多领域。这也导致人体有更多的
  纳米材料的形貌、组成对其生物学相关性质有着重要的影响,本课题主要研究了不同形貌及组成的钯纳米材料的模拟酶活性。首先通过比较不同形貌钯纳米材料(六方片、立方块、
  植物根系吸收环境介质中的多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)是PAHs 进入食物链、危及人类和其他生物健康的重要途径之一。研究表明,氧化石墨烯(Graphene
  多孔碳纳米材料由于其高的比表面积及孔体积、环境友好、生物相容性好等优点已在催化、储能、生物医学等领域有着广泛的应用前景。本课题主要通过制备在水中单分散的氮掺