【摘 要】
:
模式分类系统中,往往需要从大量的特征中选择最优的特征子集,人工选择特征的方法往往费时费力,本文介绍了基于改进离散粒子群(improved binary particle swarm optimization,IBPSO)和支持向量机(support vector machine,SVM)封装模式IBPSO-SVM的特征子集选择方法.首先随机产生若干种群(特征子集),然后用IBPSO算法优化随机产生
【机 构】
:
河南工业大学信息科学与工程学院,河南郑州450001
论文部分内容阅读
模式分类系统中,往往需要从大量的特征中选择最优的特征子集,人工选择特征的方法往往费时费力,本文介绍了基于改进离散粒子群(improved binary particle swarm optimization,IBPSO)和支持向量机(support vector machine,SVM)封装模式IBPSO-SVM的特征子集选择方法.首先随机产生若干种群(特征子集),然后用IBPSO算法优化随机产生特征子集,并用SVM分类结果指导搜索,最后选出最佳适应度的特征子集以训练SVM.仿真实验表明,基于IBPSO-SVM的特征子集选择方法的确是一种行之有效的特征子集选择方法.
其他文献
BK和粒子滤波(PF)是动态概率模型两种重要的近似推理算法,BK算法有较高的计算效率但会引入较大的误差,PF可以近似任意分布但存在计算的高维问题.结合BK和PF的优点,提出多Agent动态影响图(MADIDs)的一种混合近似推理算法.根据概率图模型的可分解性,将MADIDs分解生成用于推理的原型联合树,混合近似推理算法在规模复杂度较小的团上执行PF推理以达到局部最佳估计,而在其他的团上执行BK推理
基于案例推理(CBR)是人工智能领域中一种重要的推理方法,其基本思想是利用以往的经验和知识,将已有问题的解决方法加以调整和修改,用于解决当前类似问题.近来,CBR研究又取得了新的进展并得到实际应用.本文通过重点阐述CBR中的两个关键技术 案例表示和相似检索算法,梳理和总结了CBR的研究进展,并列举了CBR在诊断、预测及设计三个领域的具体应用.最后,对CBR未来的研究进行了展望.
本体作为知识表示的有效手段,形式化的提供了领域内共同认可的知识,促进了知识的共享和重用.把本体引入知识管理领域实现了语义级的知识服务,提高知识利用的深度,大大深化了知识管理的内涵.本文对基于本体的知识管理的研究进展进行了介绍,包括国内外研究进展,挑战与发展方向等.
本文为Web服务的QoS描述定义了一个QoS项层本体WS-QMO,用来描述Web服务QoS相关的概念和关联,既可用于对服务QoS信息的描述和发布,也可用于对服务质量需求的描述.WS-QMO本体基本满足了当前对Web服务QoS语义建模的要求,并且由于适当地加入SWRL规则,它不但可以灵活地自定义单个QoS属性,描述一个QoS属性在不同条件下的不同取值,还可以由已有的QoS属性定义复杂的组合QoS属性
为了解决多主体系统的开放性和动态(性)所带来的主体信任问题,提出一种基于社区发现的信任机制.该机制首先使用G-N算法发现系统中的社区结构;然后根据推荐主体的推荐信任分别计算被评估主体的社区内部、外部声誉,进而结合直接信任和间接信任评价主体的综合信任度;最后通过反馈机制实现主体信任度的动态变化.仿真实验结果表明,基于社区发现的信任机制能有效评估主体信任度,提高交互成功率.
无中心式大规模多智能体系统在军事,航天和灾难救援方面具有广泛的应用前景.然而现有多智能体系统的控制方案无法实现大规模条件下的有效控制,其主要难点在于智能体无法在通讯和传感器受限条件下实现全局知识共享来支持智能体自主决策.本文提出了一个基于无中心式的大规模多智能体系统知识共享方案,其核心是利用智能体历史交互的信息构建局部知识库,并由此建立一个不精确的局部决策模型实现对未来相关知识的分发.这种模型可以
人类社会的知识可分为:人类知识、组织知识和个体知识.人类知识是人类全部知识的总和,可分为:理论性、方法性、技能性、系统性、选择性、元知识等类型知识;组织知识是社会系统为实现其社会价值对相关学科知识的融合,应包括:业务知识、组织管理知识与系统文化知识;个体知识应包括:职业知识及能够支持长期发展的哲学素养和适当的生活知识和社会知识.知识结构的形成有建构和强化行为反应两种方式,理论性和方法性知识结构以建
作为搜索引肇盈利的主要商业模式之一,竞价排名的赞助商广告链接以其高效、低风险、灵活方便的特点受到传统营销方式下处于劣势的中小企业的青睐.然而搜索引擎结果页面(Search Engine Result Page,SERP)上出现大量的广告链接是否影响用户体验?这些广告链接的实际收效如何?加入赞助商广告链接的搜索引擎如何影响用户的点击行为?开展这些研究将对研究用户使用搜索引擎的行为特点、改进搜索引擎改
支持向量机(SVM)是一种新型的基于统计学习理论的机器学习方法,已经成功的应用于模式识别和函数估计等问题中.已有的加权支持向量机方法大都是从样本重要程度的角度来考虑问题,本文提出了两种基于样本属性重要度的加权SVM方法,包括基于增益比率和基于Gini指标的属性重要度加权SVM方法.这两种方法分别通过计算各个属性的增益比率和Gini指标来评估样本属性的重要度.并把这两种方法与已有的基于信息增益的属性
基于无监督决策树的层次聚类是一种通过建立无监督决策树来聚类的方法,但是该方法对每个数据子集的势以及子集间的距离考虑的不全面.为了克服这一缺点,本文提出了两种新的启发式进行结点分裂,并在四个数据库上验证了新方法的可行性和有效性.