【摘 要】
:
翻转课堂是近年来兴起的提高课堂教学效果的新模式,其注重学生综合素质和创新能力的培养.但是大多数翻转课堂教学采取的仍然是终结性评价方式,即学生成绩仍主要由期末考试决定,没有在翻转课堂及整个教学实施过程中给予学生成绩上的反馈,一定程度上影响了学生积极参与教学活动的热情,且学生仍非常注重期末考试,可能造成考前突击复习甚至考试作弊等现象.因此,本研究针对上述问题,在我校卫生事业管理专业教学中将翻转课堂与形
论文部分内容阅读
翻转课堂是近年来兴起的提高课堂教学效果的新模式,其注重学生综合素质和创新能力的培养.但是大多数翻转课堂教学采取的仍然是终结性评价方式,即学生成绩仍主要由期末考试决定,没有在翻转课堂及整个教学实施过程中给予学生成绩上的反馈,一定程度上影响了学生积极参与教学活动的热情,且学生仍非常注重期末考试,可能造成考前突击复习甚至考试作弊等现象.因此,本研究针对上述问题,在我校卫生事业管理专业教学中将翻转课堂与形成性评价联合开展,探索其在医学统计学课程中的可行性,并评价教学效果.
其他文献
院内感染会增加患者的平均住院时长与住院费用.铜绿假单胞菌(pseudomonas aeruginosa,PA)是引起医院获得性感染最常见的病原体之一.由于PA对多种抗菌药物表现为天然或获得性多重耐药,大幅增加了临床治疗难度与疾病负担.基于此探索并比较多药耐药PA感染患者、非耐药PA感染患者及无感染患者的归因住院费用与住院时长.
基于现有常用特征选择算法,针对表达谱数据的不同特点来建立方法应用策略.通过模拟不同特征数、样本量以及噪声大小的数据集,选用了8个特征选择算法,并在3种分类器中进行测试,以分类精确度和计算复杂度作为衡量指标来对每一种方法的优劣性进行评价.最后将其应用到真实数据集中,并对每种方法的结果进行分析和比较,选择出最佳的特征选择方法.
当前养老机构规模和数量增长显著,但却面临效率不高、质量不佳等诸多问题.通过对养老机构的服务效率进行评价,为提高社会化养老服务的效率与质量提出针对性的对策建议.
确定医学参考值范围的研究在应用中并不少见,但有关其样本量的估计方法也都还不成熟.本文初步探讨医学参考值范围确定试验中的样本量估计方法.以一致性评价中Bland-Altman法为基础,分别依据t分布法和方差重估法(MOVER,Method Of Variance Estimates Recovery)构建关于参考值范围的置信区间估计,再由置信区间反推相应的样本量估计公式.经Monte-Carlo方法
脑电图(EEG)作为电生理信号具有无创性、成本低等优点,因此在临床上得到广泛应用.但是医生对于神经系统疾病(如癫痫)的诊断往往是基于对生理信号波形的观察,这样很容易忽略信号在波形上的微小变化.同一种疾病可能具有不同的波形,不同疾病之间波形也可能相似,不同的医生由于经验的不同对于同一种疾病的电生理信号可能具有不同的认识,很难避免判读时的主观性,当信号量较大时降低了疾病诊断的准确性和工作效率.脑电图作
健康事件的分布常具有空间异质性/聚集性,准确识别并处理健康事件数据中的空间模式是认识健康事件发生发展规律的重要前提.扫描统计量是目前应用最为广泛的空间模式识别技术,其识别结果受参数影响.现有的识别结果的空间准确性评价指标常依赖于真实的空间模式即聚集性区域的分布,因此难以指导实际应用中的参数选择,也无法保障真实聚集性区域未知时识别结果的准确性.本研究提出了新的空间准确性评价指标MCS-P,能不依赖于
诊断试验的Meta分析常用灵敏度、特异度及两者复合而成的指标评价诊断试验的准确性,此类方法未能充分利用观察数据的分布信息,阈值效应和研究间的异质性也难以恰当处理,有可能导致偏倚产生.本文提出一种利用标准化均值差(SMD)构建SROC新模型的方法(SMD SROC模型),充分利用诊断数据的分布信息,提高SROC拟合的准确性.
NUTS算法(No-U-Turn sampler)是HMC算法(Hamiltonian Monte-Carlo)的一种改进方法,是近年来新兴的一种贝叶斯参数估计算法.本研究目的是探索NUTS算法估计贝叶斯联合模型参数的可行性.数据来源于R软件包JMbayes的肝硬化临床随访数据,在10年间312名患者共被随访1945次,随访每次都检测血清胆红素,有169名患者出现事件结局(死亡或肝移植).利用贝叶
探讨辅助受孕与婴儿喂养行为之间的关联.结果表明辅助受孕不是婴儿喂养行为的独立影响因素,但可以联合剖宫产和产后抑郁作用于喂养行为。
评价多水平模型应用于位点集关联分析的可能性.本研究按照1∶1病例对照借助Monte-Carlo模拟100000次,每次随机抽取1000病例,1000个对照.分别模拟了10个位点与疾病在不同OR和相关系数的情形,比较了logistic回归和多水平模型下的一类错误和检验效能.