碳纳米纤维促进钙钛矿结晶并钝化钙钛矿薄膜缺陷

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:competent110
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  钙钛矿太阳能电池是目前最有希望的第三代光伏电池,最高的光电转换效率已达25.5%[1],但是钙钛矿层在加工过程中极易产生大量的晶体缺陷态,带有大量的电荷,成为电子-空穴的高复合位点[2],极大的限制了电池器件光电转换效率以及稳定性.在这里,我们利用静电纺丝技术制备出PAN纤维,在进行高温碳化以及后处理得到了官能化纳米碳纤维(CNFs-N),用于了调控钙钛矿的生长与结晶[3][4].CNFs-N上的官能团以路易斯碱的形式(如C-NH2、C=N等)与Pb2+形成配位,为钙钛矿的结晶提供了更多的形核位点,调控了钙钛矿晶体的生长以及大晶体的形成,并且降低了Pb2+的离子迁移,提高了钙钛矿薄膜的稳定性.最后制备得到的CNFs-N钝化钙钛矿的电池器件的光电转换效率为20.3±0.3%;未封装的电池器件放置在大气环境(相对湿度为30-50%)中25天以后,掺杂有CNFs-N的电池仅发生了轻微的降解;通过制备只通电子的器件进行测试得到,有无CNFs-N掺杂的缺陷态密度分别为1.566(±0.119)*10-16 cm-3和2.858(±0.451)*10-16cm-3.
其他文献
SnO2作为一种优良的电子传输层(ETL)材料,具有许多优点,但仍面临许多挑战.与其他金属氧化物ETL(例如,TiO2、ZnO)一样,SnO2薄膜上存在许多由于氧空位引起的表面缺陷,这可能会恶化其电子传输的性质.在自然界中,氯化胆碱是一种植物光合作用促进剂,对植物产量的增加具有显著影响.氯化胆碱可提高类囊体膜中光合作用所生成电子的转移活性,从而促进叶绿体中三磷酸腺苷(ATP)的合成.受到这种生物材
碳基钙钛矿太阳能电池以碳材料替代传统有机spiro空穴传输层和贵金属电极,是降低制造高成本,提高器件稳定性,推进钙钛矿太阳能电池商业化进程中非常有效的措施.然而,由于碳对电极的空穴选择性较差,且其功函(~5.0 eV)与MAPbI3的功函(~5.4 eV)之间的能级偏移较高,影响了器件空穴的提取效率,导致MAPbI3/CE界面接触不良以及明显的电荷转移损失,从而使太阳能电池的光电转化性能偏低.本项
相比于硅基太阳能电池,钙钛矿太阳能电池的独特优势是可以制备柔性器件,基于刚性衬底的钙钛矿电池的认证效率已经达到了25.5%,但是柔性器件的效率相对较低.在我们的工作中,首先通过配体与添加剂协同工程对FAPbI3钙钛矿薄膜的结晶过程进行调控,探讨了MACl对FAPbI3薄膜结晶过程的影响机制,通过低压辅助法在空气中制备出了高质量的FAPbI3薄膜,基于该策略制备的柔性器件的效率可以达到19.38%,
富溴全无机钙钛矿CsPbIBr2太阳能电池因其优异的稳定性在光伏领域内受到了广泛关注.但是其体相内严重的非辐射复合制约了器件开路电压的提升.在这项工作中,我们首先利用碱金属离子对CsPbIBr2薄膜的生长过程进行了调控,获得了具有高结晶性和致密表面的CsPbIBr2薄膜.此外,利用非卤素乙酸根离子钝化卤素空位缺陷减少非辐射复合,同时提高了α相的稳定性.最后采用低成本的丝印碳电极和室温沉积的氧化钛电
The unique properties of MXenes that arise from terminated functional groups and oxidization of MXenes make them attractive for application in photovoltaic devices like perovskite solar cells (PSCs).H
钙钛矿太阳能电池拥有成本低、工艺简单以及光伏性能优异等优点,作为一种最有发展前景的光伏发电技术之一而受到广泛关注.然而,钙钛矿太阳能电池仍然面临一些挑战,比如长程稳定性、大面积电池器件制备工艺等问题.载流子传输层开发与优化是解决上述问题有效方法之一.二氧化锡(SnO2)纳米材料因其具有较高电子迁移率、较宽带隙、长程化学稳定性和匹配能级等优点而被认为是高效的电子传输材料.针对溶胶凝胶法制备的SnO2
The power conversion efficiency (PCE) of Cs2AgBiBr6-based perovskite solar cells (PSCs) is still low owing to the inherent defects of Cs2AgBiBr6 films.Herein,we demonstrate a carboxy-chlorophyll deriv
有机-无机卤化物钙钛矿由于较高的载流子迁移率,较好的光吸收率,广泛应用于太阳能电池领域[1].SnO2作为一种宽带隙半导体,是一种有前途的ETL材料,但是其与钙钛矿层之间的界面电子复合会降低器件性能.这里,一种简单的掺杂手段被用于修饰SnO2,可以调整SnO2能级的同时提高钙钛矿晶体的结晶度.多金属氧酸盐是一类由过渡金属和氧组成的簇合物,由于其具有充当浅电子陷阱,有效地分离光生激子的特性已经广泛应
High efficiency four-terminal (4-T) tandem solar cells rely on three transparent electrodes with high conductivity and low free carrier absorption in the near-infrared (NIR) region.In this work,a high
与传统结构(n-i-p)钙钛矿电池相比,反型(p-i-n)钙钛矿电池具有制备简单和J-V滞回效应小等优点.采用无机空穴材料代替有机空穴材料是提高反型钙钛矿电池稳定性的一种有效途径[1,2].我们以CuInS2为空穴传输材料,制备了结构为ITO/CuInS2/PCBM/BCP/Ag的钙钛矿太阳能电池.与广泛研究的基于NiO反型结构钙钛矿电池相比,基于CuInS2的钙钛矿电池转换效率接近于基于NiO的