【摘 要】
:
采用阴离子表面活性剂十二烷基磺酸钠形成的球状胶束作模板,研究了光化学还原AuCl生成单分散的金纳米粒子的条件.以紫外-可见光谱记录的金粒子表面等离子体共振吸收谱带按甲醇、丙醇和丙酮溶液体系的顺序依次蓝移,TEM图像表征的粒子尺寸也按相应顺序减小.在含有2.45×10mol/L HAu-Cl-4.13×10mol/L CHSONa的水/丙酮体系中,形成了平均粒径为7.5nm的单分散金粒子胶体溶液,讨
论文部分内容阅读
采用阴离子表面活性剂十二烷基磺酸钠形成的球状胶束作模板,研究了光化学还原AuCl<,4><->生成单分散的金纳米粒子的条件.以紫外-可见光谱记录的金粒子表面等离子体共振吸收谱带按甲醇、丙醇和丙酮溶液体系的顺序依次蓝移,TEM图像表征的粒子尺寸也按相应顺序减小.在含有2.45×10<-4>mol/L HAu-Cl<,4>-4.13×10<-3>mol/L C<,12>H<,25>SO<,3>Na的水/丙酮体系中,形成了平均粒径为7.5nm的单分散金粒子胶体溶液,讨论了金粒子的形成和稳定作用机理.
其他文献
在查阅大量文献的基础上,总结了高温抗蠕变、高韧性、高强度、高耐蚀性、降底成本和改善工艺性六大热点研究方向,分别阐述了近年在各研究方向上取得的典型研究成果.重点论述了高温抗蠕变铸造镁合金的研究现状.从热力学角度分析了镁合金中可能出现的各相对镁合金高温蠕变过程的影响.叙述了Mg-Al,Mg-Zn,Mg-Al-Zn和Mg-RE系耐热合金的最新发明.
用MEVVA(Metal Vapor Vacuum Arc)离子注入法对增强纤维进行表面处理,形成纳米尺寸的表面改性层,用表面纳米改性的纤维制作树脂基复合材料,并对纳米表面改性纤维增强树脂基复合材料的电磁学性能和吸波特性进行研究.研究表明:对增强纤维进行表面改性,可以有效改善纤维增强树脂基复合材料的吸波性能,用纳米表面改性法制备的纤维增强树脂基复合材料在8~18GHz内,雷达反射率为-(2.6~6
本文研究了多孔硅衬底微波CVD金刚石薄膜的制备工艺及场电子发射特性.以多孔硅作为生长金刚石突起阵列的模板,生长出带多微尖的纳米金刚石晶粒,使场电子发射阈值下降(90Ma/cm),场发射性能稳定.文中对这种场发射特性提出了理论解释.
通过表面离子注磷及中子辐照活化处理获得具有放射活性的TiNi合金支架,将这种支架和非放射性的对照支架置入兔的腹主动脉,研究了放射性对血管内膜及其邻近脏器的影响.结果表明注磷TiNi合金试样的放射同位素在中子辐照后最初以P为主;经过3个月的衰变,P降低到次要地位,这期间试样的放射活度由160μCi/g降低到42μCi/g,平均半衰期约为62天.放射性支架植入血管的新生内膜厚度低于对照组.放射组的新生
近年来,以高分子材料为载体的药物释放体系在理论发展和工艺研究方面进入一个新的阶段.本文分别详细介绍了三种药物释放体系,包括控制释放药物体系,靶向药物释放体系、智能药物释放体系.
本文研究了用于人工关节软骨假体的聚乙烯醇水凝胶和羟基磷灰石复合材料的结构与性能,讨论了含水量、羟基磷灰石含量等因素对其生物力学性能的影响,观察和比较了复合材料的微观形貌.研究表明羟基磷灰石在聚乙烯醇水凝胶中分散均匀,良好相容,改善了复合材料的生物力学性能.
本文详细介绍了电阻法测量镍钛铌形状记忆合金相变点的具体方法、所用仪器设备和解决的几个实际问题.使最终的测量精度可以达到0.1度.完全符合工程应用及产业化的要求.为了精确控温,我们使用Lakeshore 340控温仪器(控温精度小于0.5﹪),并将样品放置在真空封闭的内杜瓦,以准静态的变温方式(变温速率小于0.5℃/min),从-160℃升温到室温,再降温到-160℃,作温度循环,同时测量样品的电阻
本研究的目的是开发能在1000℃左右可通过渗透工艺制备的新型氧化铝-玻璃全瓷冠材料.通过对磷酸盐、硅酸盐及硼酸盐体系中大量玻璃的系统研究,开发了组成为21SiO-24BO-15LiO-35AlO-6CaO(质量分数,以百分数表示)的玻璃,该玻璃可在950~1000℃下实现对氧化铝的自发渗透,运用渗透工艺可制备致密的氧化铝-玻璃复合材料.初步的力学性能表征表明,氧化铝-玻璃复合材料的强度为320 M
讨论了纳米TiO光催化材料降解污染物的机理,综述了纳米TiO光催化材料在饮用水中降解腐殖酸方面的研究进展,从材料本体和反应体系条件等方面介绍了提高光催化降解效率的途径,展望了纳米TiO光催化材料的发展方向与应用前景.
本文研究了用不同的聚合方法制备的聚丙烯酸丁酯(PBA)对浇铸型有机玻璃(PMMA)的增韧改性.研究结果表明,当PBA以纳米粒子簇分散在PMMA基体中时,对PMMA有较好的增韧改性效果.当PMMA中含e-PBA为0.5﹪(质量分数)时,改性PMMA的冲击强度比基体提高38﹪.SEM观察表明,b-PBA橡胶粒子以独特的纳米簇状结构均匀分布在PMMA基体中,大量的微裂纹以b-PBA粒子为中心呈放射状向外