【摘 要】
:
Cu2ZnSn(S,Se)4(CZTSSe)薄膜太阳能电池由于其良好的光伏性能及无毒丰产的元素组成受到国际上的广泛关注,迄今已达到接近13%的能量转换效率,但是距离理论能量转换效率(33%)仍然相差甚远。对于这种多层结构的薄膜电池器件,除吸收层外,器件上下接触界面(P-N异质结界面、背接触界面)质量是影响器件性能提升的关键因素。针对背接触界面不利的相分解反应、过厚的MoSe2层等关键问题,我们提出
【出 处】
:
第八届新型太阳能材料科学与技术学术研讨会
论文部分内容阅读
Cu2ZnSn(S,Se)4(CZTSSe)薄膜太阳能电池由于其良好的光伏性能及无毒丰产的元素组成受到国际上的广泛关注,迄今已达到接近13%的能量转换效率,但是距离理论能量转换效率(33%)仍然相差甚远。对于这种多层结构的薄膜电池器件,除吸收层外,器件上下接触界面(P-N异质结界面、背接触界面)质量是影响器件性能提升的关键因素。针对背接触界面不利的相分解反应、过厚的MoSe2层等关键问题,我们提出了一种简单温和的紫外-臭氧界面氧化技术,对Mo基底表面进行处理,以改善CZTSSe/Mo背接触界面质量,进而提升CZTSSe电池器件性能。研究表明,紫外-臭氧处理可在Mo基底表面生成超薄可控的Mo氧化物层,高温硒化过程中,在阻挡Mo与CZTS直接接触反应生成不利二次相的同时,可有效抑制背接触界面过厚MoSe2层的生成,减小器件串联电阻。同时,紫外-臭氧处理后背接触界面高含量氧元素的组成,更有利于界面处Na元素的富集,进而提高吸收层结晶质量。经紫外-臭氧处理的电池器件开路电压、短路电流、填充因子都有显著提升,电池的光电转换效率提升15%。此温和界面氧化技术简单有效,可应用到多种光伏器件及功能材料界面改善体系。
其他文献
目前器件效率大于20%的CIGS电池通常是通过真空方法制备的.近年来基于液相法制备的CIGS电池也取得了快速发展,并获得了17.3%的转换效率,与真空法相比仍有一定的差距.研究表明在高效CIGS电池的吸收层表面通常存在一层贫铜组分的有序缺陷化合物(2VCu+InCu,OVC).OVC相可以极大提高CIGS/CdS异质结质量,从而提升CIGS器件效率.在液相法制备薄膜中,由于无法实现元素在制备过程中
硒化工艺作为制备高效Cu2ZnSn(S,Se)4 (CZTSSe)太阳能电池的关键因素,近年来受到越来越多的关注.然而,在硒化过程中低活性的硒会形成有害的硒团簇,并在CZTSSe吸收层中积累[1-3].硒团簇的存在不仅降低了CZTSSe吸收层的导电性,而且增加了载流子复合的可能性,从而恶化CZTSSe太阳能电池的光电转换效率[2-3].我们提出使用具备独特萃取性能的SCCO2处理策略[4]来解决硒
对于铜铟镓硒(CIGS)等薄膜多晶异质结太阳能电池,其性能在空间分布上往往具有非均匀特性。来自器件不同层的寄生电阻效应被认为是导致这种非均匀特性的重要因素[1],而若通过实验来检验不同参数的影响,势必造成巨大的时间和资源浪费[2]。因此,本工作基于二维数值模拟工具SPICE,对CIGS电池的寄生电阻效应进行了系统的研究。具体来说,我们首先建立了二维分布式等效电路模型[3]用于模拟实际CIGS电池的
硫化锑Sb2S3是一种新兴的薄膜太阳能电池吸收层材料,由于合适的带隙(~1.7eV)和高吸收系数(1.8×105cm-1)以及元素资源丰富和无毒特性而备受关注[1,2].本课题组采用气相输运沉积法制备了8b2S3薄膜太阳能电池并研究了蒸发源-衬底距离对Sb2S3薄膜太阳能电池性能的影响,实验发现通过优化蒸发源与衬底之间的距离将光电转换效率从0.83%提高到3.02%.图1(a)是制备8b2S3薄膜
铜铟镓硒(Cu(In,Ga)Se2,CIGS)薄膜太阳能电池能量转换效率已达到23.35%[1],该电池温度系数低、弱光性能好、抗辐射能力强,是最具潜力的薄膜太阳能电池之一.采用三步共蒸发法制备CIGS薄膜,可形成V型Ga浓度梯度,不仅更充分吸收长波光,形成的背电场也促进了光生载流子分离,提升电池效率[2].本文利用分子束外延设备,在制备有Mo背电极的玻璃基底上,采用三步共蒸发法制备CIGS薄膜.
异质结界面复合是限制CIGS性能提升的关键问题.目前,在CIGS太阳能电池中通常采用化学水浴沉积(CBD)制备的CdS作为n型缓冲层并且其器件效率达到了22.9%,仅次于世界纪录效率(23.35%).因此对CdS进行掺杂,优化CdS特性,改善其与CIGS界面质量有望进一步提高CIGS太阳能电池效率In掺杂CdS是一种有效的提升CdS光电特性的方法.但是In2S3的溶度积常数极低,通过传统的CBD工
在CZTSSe太阳能电池中,Voc损失较大的本质原因可以归结于吸收层体相中的深能级缺陷.其中,SnZn反位缺陷作为最主要的深能级施主缺陷,严重损害了CZTSSe太阳能电池的Voc.SnZn缺陷会在CZTSSe的禁带中形成间接的复合中心,产生电子-俘获效应,降低少数载流子寿命[1-3].此外,SnZn反位缺陷还会和CuZn反位缺陷形成[2CuZn+SnZn]的缺陷簇.这些缺陷簇会引起带隙或静电势的波
Cu2ZnSn(S,Se)4 (CZTSSe)光伏器件的低开路电压(VOC)是制约CZTSSe器件效率提升的关键因素.CdS与CZTSSe之间的能带失配是造成CZTSSe器件中光生载流子界面复合严重,导致开路电压亏损的一个主要原因.本工作中我们使用CBD方法,使Zn部分替代Cd形成均匀致密的Zn1-xCdxS缓冲层薄膜.测试结果表明Zn2+的引入改善了CZTS/CdS界面的能带排列,在异质结界面处
光伏发电的广泛应用为我国发展绿色经济和清洁高效的能源结构提供了新思路.在最近几年时间里,众多新型半导体材料被应用于光伏领域,其中宽带隙、廉价、稳定、无毒的全无机太阳能电池在叠层太阳电池顶电池上表现出巨大的潜力.Sb2S3本身带隙较宽(1.7 eV)、光吸收系数高且具有无毒、廉价等特性,较适合作为太阳能电池的活性层.另外,电子缓冲层具有提高电子的抽取和阻挡空穴的作用,且由于TiO2材料具有环境友好的
碲化镉和铜铟镓硒薄膜太阳能电池已经实现了大于22%的光电转化效率,但Cd的毒性和In、Ga元素的稀缺性一定程度限制了其广泛应用,需探索新型无毒、高元素丰度的薄膜太阳能电池.锑基硫族化合物薄膜太阳能电池近年来发展迅速,受到广泛的关注.锑硫硒[Sb2(S,Se)3]合金薄膜,因其带隙在1.1 eV到1.7 eV之间连续可调,覆盖了Shockley-Queisser极限效率对应的最佳带隙(1.3 eV)