Controllable hierarchical self-assembly of porphyrin-derived supra-amphiphiles

来源 :The First Asian Conference on Porphyrins, Phthalocyanines an | 被引量 : 0次 | 上传用户:zhangyuxin_718
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Control of self-assembly is significant to the preparation of supramolecular materials and illustration of diversities in either natural or artificial systems.Supra-amphiphiles have remarkable advantages in the construction of nanostructures but control of shape and size of supramolecular nanostructures is still a great challenge.
其他文献
能源和环境是当今时代备受关注的两个重要问题。全球对能源的需求一直在快速增长,预计到2100 年能源需求将约为18 TW(现在的3 倍)[1]。然而,迄今为止,大部分能源来自于化石燃料,其储量有限,是不可再生能源。
BiVO4 具有合适的禁带宽度(2.4 eV)和价带位置(2.7 V vs NHE),在光催化水氧化的研究中备受关注.近些年来,提高其光催化活性是热点的研究课题,BiVO4 光催化剂研究一直承载着潜在的应用价值和对光催化过程理论的深入认识.
Lithium-ion batteries(LIBs)have been widely applied in the portable electronics,but their capacities are not high enough to meet the future society.
随着人口的增长,工业化的发展和能耗的增加,淡水资源紧缺已经成为一个全球性的问题。利用自然界中充足的太阳能照射水来收集水蒸汽是一种最经济有效的海水淡化方法[1–3]。为了满足实际应用,开发具有优异光热转换性能、超薄多孔和低导热性能的局部加热多孔薄膜来对水表面进行加热,从而提高水脱盐效率是至关重要的。
It is highly desirable to develop electrocatalysts with multiple active sites for oxygen evolution reaction(OER)with the advantages of low cost and high efficiency.
有机硅空心材料是研究广泛的新型材料之一,具有中空的结构、比表面积大、通透性好,在吸附、分离、药物运输以及催化方面已有广泛应用[1],但关于其在非均相不对称催化中的应用研究体系不多,主要有L-脯氨酰胺功能化的空心纳米微球[2],空心硅载体负载MacMillan催化剂[3]和手性有机金属功能化空心微球体系[4]。
Fuel cells have recently attracted great interest as an new-type alternative energy sources.Meanwhile,proton exchange membrane(PEM)fuel cell,one of the most promising fuel cells,has received much atte
BODIPY dyes constitute a class of important organic material in the leading-edge areas.[1] However,studies on their supramolecular assembly properties remain limited in contrast to the large number of
Single molecular nanoparticles(SMNPs)integrating imaging and therapeutic capabilities exhibit unparalleled advantages in cancer theranostics,ranging from excellent biocompatibility,high stability,prol
超分子组装可以使发色团形成J-聚集结构并产生吸收红移,这为制备近红外材料提供了一种可能的新途径。由于传统超分子组装体的吸收红移较小(通常小于30 nm),如何有效提高材料性能、实现大于100 nm的红移成为亟待解决的关键问题之一。本工作使用酞菁—短肽缀合物作为组装单元,首次制备了基于酞菁的超分子近红外材料。