论文部分内容阅读
函数型数据的稀疏性和无穷维特性使得传统聚类分析失效。针对此问题,本文在界定函数型数据的概念与内涵的基础上提出了一种自适应迭代更新聚类分析。首先,基于数据参数信息实现无穷维函数空间向有限维多元空间的过渡;在此基础上,依据变量信息含量的差异构建了自适应赋权聚类统计量,并依此为函数型数据的相似性测度进行初始类别划分;进一步地,在给定阈值限制下,对所有函数的初始类别归属进行自适应迭代更新,将收敛的优化结果作为最终的类别划分。