【摘 要】
:
1,2-dihydrobenzo[e][1,2,4]triazine is a important class of heterocycles,which exists widely in natural products.Many compounds containing those motifs exhibit potent biological activities and medicina
【机 构】
:
Key Laboratory of Pesticide & Chemical Biology,Ministry of Education,College of Chemistry,Central Ch
论文部分内容阅读
1,2-dihydrobenzo[e][1,2,4]triazine is a important class of heterocycles,which exists widely in natural products.Many compounds containing those motifs exhibit potent biological activities and medicinal significance.Herein we developed a highly efficient I2 promoted domino protocol for the diverse synthesis of highly substituted 1,2-dihydrobenzo[e][1,2,4]triazines from simple and readily available aryl methyl ketones and N-(2-aminophenyl)benzohydrazides.In our reaction,three mechanism-different reactions(iodination,[1] Kornblum oxidation,[2] and heterocyclization)were assembled in a single reactor.[3-5] Hydrazine hydrate could be used as nucleophilic agent to attack the carbonyl group of product A to produce another product B,which underwent a deacylation process.[6] It is notable that the reaction performs well with varying functional group tolerance in the absence of any metal,base,or ligand.Due to the above mentioned characteristics of this reaction,it should be of great utility for concise construction of diverse heterocycles for organic chemistry and medicinal chemistry.
其他文献
流动场可导致熔体或溶液中的聚合物分子链发生取向变形[1],引起结晶动力学和聚集态结构的变化,影响聚合物产品的性能[2,3]。但到目前为止依然没有一个统一的理论来描述聚合物在外力作用下的结晶成核机理。我们利用蒙特卡洛模拟方法对应变诱导结晶的机理进行了研究。结果发现微小晶粒的近邻折叠分数在低应变下几乎不变,当应变超过一个临界应变值时,其开始下降。这意味着拉伸过程中存在成核方式的转变。在低应变情况下,聚
利用溶液浇铸成膜制备磺酸化聚醚醚酮(SPEEK)质子交换膜。通过对成膜条件的控制,得到了一系列溶剂残留量各不相同的SPEEK 膜。经过酸、水浸泡处理后,SPEEK 膜中的残留溶剂得以去除。膜在不同的相对湿度下的质子电导率和吸水率随溶剂残留量的变化呈现明显的规律性。利用接触角测定、扫描电子显微镜(SEM)和光电子能谱(XPS)等对这些SPEEK 膜进行了表征,为解释残留溶剂对其结构与性能的影响提供依
随着对高容量电容器需求的快速增长,具有高介电常数的含氟聚合物在电介质中的应用受到广泛关注.其中偏氟乙烯(VDF)、三氟乙烯(TrFE)和第三单体(三氟氯乙烯(CTFE)、二氟氯乙烯(CDFE))共聚得到的三聚物被发现具有很高的储能密度(>14J/cm3),在该体系中VDF 提供了绝大部分储能用的偶极矩,一定量TrFE 用于控制聚合物链的构象以及聚合物晶区的晶相,而第三单体则主要起到调控聚合物结晶度
聚噻吩是一类典型的半刚性共轭高分子,因其特有的光电功能和制备工艺简单备受瞩目。由于样品的聚集态结构在很大程度上决定了材料的性能,所以了解材料的组装结构、掌握其组装规律就显得尤为重要[1]。在本研究中,我们利用扫描隧道显微镜技术对噻吩类聚合物做了如下几方面的研究:(1)研究了聚3-烷基噻吩在界面组装的行为,并通过退火等外界条件的变化改善其原有组装结构。我们从分子水平上直接观测到聚3-烷基噻吩在界面组
通过简单的在不同温度下碳化多孔芳香骨架(PAF-1),我们得到一系列多孔碳材料.尽管比表面积和孔体积在高温碳化之后有所减少,但是我们得到的多孔碳材料表现出很好的二氧化碳吸收能力.PAF-1在273K和1atm下吸收CO2为46 cm3g-1,对于PAF-1-450这一值增大到100 cm3g-1.
金属有机框架在气体吸附,分子存储方面有着广阔的应用前景 [1-3]。我们采用三连接配体通过水热法合成了一个新型的具有三维网状结构的多孔金属钴有机框架1,并表征了其结构。化合物1的三维结构中包含菱形的孔道。
过去的30多年间,已对三元Ba-Sb-S体系的合成,结构和性质经进行了深入的研究.其中包括BaSb2S4,1Ba3Sb4.66S10,2 Ba8Sb6S17,3 我们用传统的高温固相合成方法,使用真空封装的石英管,得到了一种新的三元化合物Ba3Sb2S7.此化合物属于单斜晶系,空间群为C2/c,晶胞参数为 a = 18.380(2)(A),b = 12.2662 (16)(A),c= 13.164
本文用差示扫描量热法(DSC)研究了新型含不饱和双键的胆酸高分子化合物CAGE4MA的非等温固化反应动力学.在研究中,分别用KAS法、Friedman法和Ozawa法选取不同的升温速率,对实验数据进行计算处理、比较和归纳,得出如下结论:1.当样品转化率在20%-50%的范围内时,计算所得的反应活化能Ea和反应级数n的值皆为可信数据.随着升温速率的加快,计算得到的反应活化能Ea和反应级数n为可信数据
高分子微球材料在血液/灌流疗法中被广泛使用,中性高分子微球和经过化学修饰后得到的强阴离子或强阳离子交换树脂是吸附血液中毒素的重要功能材料(1-3).我们使用悬浮聚合法制备得到粒径分布窄,球形规整的聚苯乙烯-二乙烯苯微球,在此基础上采用间接氯甲基化反应制备得到氯球,更进一步的通过衍生季胺得到强阴离子交换树脂,研究了其对胆红素的吸附性能,并对该材料的形态和性能进行了考察.结果表明在最优制备条件得到的强
水凝胶光子晶体由于其独特的光学性质(光子带隙和结构色彩)和刺激响应能力被广泛应用于显示材料和传感材料开发等领域。[1] 目前,以单分散微凝胶作为构筑单元的水凝胶光子晶体已有大量的文献报道。但是,在制备方法上,通过传统的制备方法如离心法和溶液挥发诱导自组装法难以实现水凝胶光子晶体形态调控,而且长程有序的晶体结构易受外力影响难以得到保持,从而也限制了其进一步的应用。基于这一问题,我们结合微流控和微凝胶