基于复杂网络的大型复杂装备故障智能诊断原理与方法研究

来源 :第十二届设计与制造前沿国际会议(ICFDM2016) | 被引量 : 0次 | 上传用户:STTELA
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大型复杂装备的多重耦合故障、主导故障及隐含故障的快速定位与准确诊断一直是学术界和工业界关注的重要问题.本项目以复杂网络理论与方法为基础,结合人工智能相关技术,研究复杂装备网络化建模的一般原理,将人工智能与复杂网络的基础理论、方法和模型有效地应用于装备故障智能诊断的系统建模、知识组织、融合以及协作问题求解,为构建复杂装备智能故障诊断系统提供新的理论与技术基础.
其他文献
In recent years,due to the open access to raw GNSS measurements,it is possible to study other PVT algorithms to improve the positioning accuracy on smartphones.In this paper,we first give the analysis
Turn detection can be widely used in location navigation,user behavior identification,and scene awareness.Accurate real-time identification of pedestrian turns contributes to improving the accuracy of
The ground-based GNSS tomography technology can obtain three-dimensional distribution of water vapor.However,many voxels may not be passed through by satellite rays because of the limitation of satell
With the continuous improvement of Global Navigation Satellite System(GNSS)theory,the signal-to-noise ratio(SNR)of a GNSS reflectometry signal can be applied to detect snow depth.However,there are sti
Snowfall as an important global freshwater resource,especially for Xinjiang Altai region in the snow all the year round,accurate and convenient snow thickness monitoring is particularly important,at p
The global navigation satellite system(GNSS)has the advantages of high precision,high temporal resolution and low cost.The total electronic content(TEC)can be calculated by GNSS observations.The TEC s
In the calculation of high-precision GNSS data,solid tides,tides and atmospheric tides are not negligible factors in the solution process.In the present study,a large number of studies have been condu
Since May 2016,QianXun Spatial Intelligence Inc.has launched its Beidou ground-based augmentation system(QX-GBAS)which supports high-precision GNSS positioning service within the national coverage.The
针对北斗三频信号的模糊度解算算法具有速度快的优点,但需要使用伪距观测值.在动态测量中,受观测环境影响,伪距观测值容易出现粗差,这降低了三频模糊度解算算法的正确率.针对该问题,提出利用惯性辅助TCAR算法,使用惯导预测位置计算接收机和卫星间的几何距离,替代B3频点伪距计算超宽巷,以提高复杂动态观测环境下的TCAR算法正确率.构建BDS/INS紧组合模型,推导了INS辅助TCAR算法的公式.进行了两次
卫星遮挡、信号干扰等复杂环境下,无人机器人的高可信定位与导航是实现其自主行驶的必要前提.本文针对由惯性测量单元(IMU)、全球卫星定位系统(GNSS)以及双目相机等构成的组合导航系统,采用传感器深组合模式,提出了一种基于增量平滑因子图的无人机器人可信导航方法.该方法首先通过构建各传感器及深度组合导航因子图模型,进行增量平滑优化,实现多传感器信息的高精度融合、传感器参数标定与视觉特征标注.在GNSS