Separation of mixed amino acids containing L-threonine and L-glutamic acid via bipolar membrane elec

来源 :第九届全国膜与膜过程学术报告会 | 被引量 : 0次 | 上传用户:kevin7878
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  A large amount of threonine mother liquor is produced during the production of threonine by fermentation,in which many impurities are intermingled,e.g,threonine,other amino acids,residual sugars and inorganic salts.The main amino acids in the fermentation mother liquor are threonine and glutamic acid.Bipolar membrane electrodialysis (BMED) was used to separate threonine and glutamic acid in order to avoid the waste of resources.Firstly,three types of membrane stack (BP-C-BP,BP-A-C-BP,BP-A-BP) configurations are investigated,and the configuration stack BP-A-BP is considered the most suitable for separation of the mixed amino acids.Then the effects of operation voltage on separation efficiency,energy consumption and current efficiency were examined.Results indicated that 50V is the most appropriate operation voltage.The energy consumption is 11.04 kW h/kg,current efficiency is 82.6%,and the purity of the glutamic acids in recovery compartment is as high as 97.5%.Besides,strong acid type 001×7 cation-exchange resin is added into the glutamic acid recovery compartment to reduce the energy consumption.Thereby,a lower energy consumption 6.33 kW h/kg could be achieved.Hence,the BMED process to separate the mixed amino acids containing threonine and glutamic acids is feasible.
其他文献
气态膜(液液膜吸收)法脱氨工业化推广过程存在着副产品种类单一、膜组件长期操作稳定性差、预处理成本高等问题.该过程的核心是疏水微孔膜,实验表明PTFE中空纤维膜(目前国内外最小内外径膜丝的规格为0.40mm/1.0mm)具有疏水性强、物化性能好、使用寿命长等优点,在复杂、高难氨氮废水的处理中其传质性能和稳定性都优于PP膜和PVDF膜.基于优良的疏水微孔膜,根据所用吸收液的不同,气态膜法脱氨过程可得到
以聚苯醚(PPO)和聚乙烯醇(PVA)为原料,从三个角度制备阴膜、阳膜和双极膜.PPO通过季铵化,然后与烷氧基硅烷进行溶胶-凝胶反应,再与PVA共混,得到阴膜;PPO通过磺化,转化为酸型后与PVA共混,再与烷氧基硅烷进行溶胶-凝胶反应,得到阳膜;碱性阴膜液和酸性阳膜液进行复合,可形成以离子键结合的双极膜.膜的基本性能如表1所示,膜具有较高的亲水性、合适的离子交换容量以及可接受的抗碱性.结合三种膜应
以磷酸三丁酯(TBP)-煤油为液膜有机相,以氢氧化钠溶液为反萃相,以疏水性聚丙烯中空纤维膜为液膜支撑体,采用反萃相带有机分散相的稳定液膜处理高浓度含酚废水.考察了反萃相浓度、TBP浓度及两相流速对萃取效率的影响.得到了最优操作条件:反萃相浓度为0.5mol/L,液膜有机相为10%TBP-煤油,进料流速为80ml/min,油相流速为50ml/min.在最优操作条件下,萃取过程达到平衡所需时间为100
畜禽养殖废水中含有大量的抗生素,抗生素的残留会导致对人体健康的威胁,本研究采用实时控制序批式膜生物反应器(SMBR)处理工艺,同时在兼氧/厌氧单元以ORP实时曲线出现的“硝酸盐膝点”(nitrate knee)作为依据控制反硝化进程,优化乙酸钠碳源的投加;并在随后的好氧单元以pH实时曲线出现的“氨谷点”(ammonia valley)为依据实时控制曝气时间。通过实时控制,研究实际畜禽养殖废水中抗生
会议
本文根据XDLVO理论探究了范德华表面作用力张力分项(γLW)在三种场景下(平面-平面,光滑球面-平面,粗糙球面-平面)对界面作用力的影响。结果 显示:在三种场景下,γLW均对表面作用力有很大影响。污泥颗粒粘附到膜表面的过程中存在能量壁垒,γLW的变化能引起能量壁垒显著变化,当γLW达到某临界值时,能量壁垒出现消失的现象;能量壁垒随着γLW的减小而增大,这对减少膜污染具有重要的指导意义。
膜分离作为21世纪最具前景的高新技术之一,己在化工、环境、生物、医药、电子等各大领域发挥着工业改造的作用。通常,能耗高、产量低和寿命短三大问题始终制约着膜组件的应用。膜组件性能除了依赖膜材料性质,还取决于过程的操作参数和组件的几何结构。由膜单元放大至整个膜组件时,组件性能常常低于预期,原因在于膜单元的数量放大和膜组件壳体的几何放大产生了非理想流动。因此,寻求合适的方法研究膜组件非理想流动下的传递过
膜基催化反应主要是在催化反应过程中引入膜单元,利用膜的多孔、分离等特性,提高催化效率。基于膜的高精度筛分效应,实现超细催化剂与产品的原位分离,使生产过程连续化;将催化剂负载到膜上构建催化膜,通过膜表面特性调控、膜构型优化设计、新方法开发,制备高性能催化膜,实现反应-分离一体化;基于膜的均匀的微纳孔道,采用膜进行反应物料的分散,控制反应物料的浓度,提高反应物料的传质混合效率,提高反应的转化率、选择性
醋酸纤维素是研究反渗透(RO)和正渗透(FO)最早的材料,虽然醋酸纤维素膜较聚酰胺反渗透膜具有良好的耐氯、抗污染性能,但是醋酸纤维素往往具有低的水通量和盐截留,这限制了醋酸纤维素反渗透膜的广泛应用。本文在三醋酸纤维素膜内添加无机纳米粒子,考察膜材料水通量和盐截留的变化,并通过溶解-扩散模型研究其传质机理,研究了添加不同纳米粒子的三醋酸纤维素膜的基本传输性能-水/盐分配系数(Kw,Ks)、扩散系数(
膜分离技术由于其高效、节能、环保的特点,广泛地应用于水处理、食品加工、生物医药以及能源化工等行业。渗透性是多孔膜的主要性能之一。目前的研究主要集中在膜表面结构、膜材料以及扰流组件对膜渗透性的影响,而膜内部结构如膜孔形状对渗透性的影响罕有报道。本文提出了一种有效的简化模型,用于预测具有不同膜孔形状的多孔膜的渗透通量。研究将多孔膜简化为单个膜孔的规则阵列,以单个膜孔为研究对象。利用计算流体力学研究了不