Explicit θ-schemes for mean-field backward stochastic differential equations

来源 :第十六届全国微分方程数值方法暨第十三届全国仿真算法学术会议 | 被引量 : 0次 | 上传用户:yangqiding
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  In this work,we propose a class of explicit θ-schemes for solving mean-field backward stochastic differential equations.
其他文献
  本报告主要讨论了非线性波动方程组的Richardson 外推法及其收敛性。首先,运用紧致差分方法分别离散时间导数和空间导数,并引入合理的分裂项,对非线性波动方程组构造ADI 紧
  In the study of symplectic integrators,long-time near-conservation of first integrals were numerically validated and rigorously analyzed by using backward e
  This work is devoted to the error estimate of the collocation type exponential time integrators for solving the semilinear parabolic systems.
  In this talk,we present a linearly implicit energy-conserving scheme for the numerical integration of the Camassa-Holm equation by using the multiple scalar
  主要研究一类随机Volterra 积分微分方程的半隐式欧拉方法的强收敛性。通过讨论数值解的可解性和均方有界性,结合Ito 积分的性质,证明了方法的1 阶强收敛。
  Order conditions for two-derivative Runge-Kutta-Nystr(o)m(TDRKN)methods are obtained via the Nystr(o)m tree theory and the B-series theory.Trigonometric fit
  In this paper,we study the linearly damped stochastic differential equations,which have the invariants satisfying a linear differential equation whose coeff
  In the last few decades,Runge-Kutta-Nystr"om(RKN) methods have made significant progress and the study of RKN-type methods for solving highly oscillatory d
会议
  本文考察了弱奇性Volterra 积分微分方程的谱配置法,并对该方法进行了收敛性分析,分析结果表面,误差收敛阶依赖于方程解函数的正则性,我们也用数值实验证实了这一结论。本文
  In this talk,we develop continuous-stage Runge–Kutta–Nystr(o)m(csRKN)methods for numerical integration of second-order differential equations.