论文部分内容阅读
web上越来越多的论文给我们提出了一个新的课题:如何检索满足需求的论文.传统的基于查询项匹配检索方法往往无法准确的检索出满足用户需求的论文.这里描述了一种对论文关键词进行层次聚类的算法:首先把论文关键词聚类为概念,然后用概念向量表示论文;在相似性检索时,根据概念向量计算论文的相似性,把与给定论文最相似的论文返回给用户.用这种算法,能很好的对论文进行基于概念的相似性检索.本算法克服了基于查询项匹配检索的缺点,有效地改进了传统的相似性检索方法,实验证明其有较高的查全率和查准率.