钙钛矿量子点太阳能电池的性能研究

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:nextronnpf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  全无机CsPbI3量子点钙钛矿太阳能电池优异的性能吸引了众多研究者的目光[1].然而,相比于有机无机钙钛矿太阳能电池而言,其光电转换效率还有待进一步提高.目前,α-CsPbI3量子点表面的油酸/油胺配体容易脱落,且不利于光生载流子的快速传输[2].此外,在CsPbI3量子点钙钛矿太阳能电池中,通常选取致密TiO2作为电子传输层,而介孔TiO2与CsPbI3量子点难以形成良好的界面结合,降低载流子分离传输效果.因此,如何改善CsPbI3量子点钙钛矿太阳能电池中的表界面状态是提升其性能的关键.鉴于此,我们开发出一种短链辛酸/辛胺配体钝化的CsPbI3量子点,研究表明短链配体与量子点表面具有更强的结合能,在增强量子点稳定性的同时也减少了表面缺陷态数量[3].通过引入Cs离子修饰CsPbI3量子点/电子传输层界面结构,研究发现存在明显的介孔TiO2/CsPbI3量子点过渡结构.证实Cs离子修饰不仅可以将CsPbI3量子点稳定在介、 TiO2网络结构中,还可以促进二者界面的有效结合,组装的介孔结构CsPbI3量子点太阳能电池的光电转换效率达14.32%[4].采用两种不同氯化铵掺杂量掺的SnO2作为双电子层以改变SnO2/钙钛矿界面的能级排列,以减少载流子复合、增强电子转移并降低电压损失[5].
其他文献
PbS量子点具有低成本、可溶液法加工和宽的光谱调节范围(500~ 2500 nm)等优点备受人们关注,是近红外光伏器件的出色原材料.PbS量子点表面原始配体通常与卤素离子配体进行交换,使量子点获得优异的表面钝化和薄膜导电性.[1]然而,离子型配体由于缺乏自身偶极矩,其与量子点表面仅存在单一方向的界面偶极,导致卤素离子配体钝化的量子点具有深能带.特别是近红外(光吸收> 1100 nm)PbS量子点,
三维异质结结构通过载流子收集方向与光照方向正交,有效解决量子点薄膜载流子收集受限难题,然而如何实现三维电子传输层结构的可控连续性调节,使其与PbS量子点材料光电性质匹配,仍是三维异质结量子点太阳能电池面临的重要挑战.本工作中,我们采用聚苯乙烯微球模板法[1],结合溶胶-凝胶法,制备了三维异质结太阳能电池.通过调节聚苯乙烯微球尺寸(直径为400 nm、500 nm、600 nm)和溶胶-凝胶过程中的
PbS量子点由于其制备工艺成熟、易大规模生产、可溶液法加工、在可见-近红外宽光谱区间(0.41-1.6 eV)内带隙可调,且具备多激子吸收等特性,成为了近年来备受关注的新型宽光谱光伏材料.目前,利用n型ZnO电子传输层和p型PbS量子点构筑的异质结型量子点太阳能电池成功将光响应范围拓展至1900 nm,获得34mA/cm2以上的短路电流密度(图1).然而,ZnO电子传输层固有的能带及化学性质,易造
由于碳基单原子催化剂的高原子利用率,高导电性和优秀的电催化活性,已经被广泛应用于电催化领域[1,2].本文利用静电纺丝技术制备具有多通道的N掺杂碳纤维负载单原子Co(Co-MCN)电催化材料作对电极用于量子点敏化太阳能电池(QDSSCs).通过SEM、TEM可以观察到Co-MCN拥有多通道结构,而且从图1d可以发现其具有多孔结构,这有利于电解液的扩散和暴露更多的活性位点.TEM中未发现形成Co纳米
量子点敏化太阳能电池由于量子尺寸效应、多激子效应等具有44%的理论效率,具有重要的潜在应用。但是目前其效率仍然低于其他太阳能电池,制约电池性能的最主要原因之一是电池界面处存在着严重的载流子复合。针对此问题,本文采用等离子增强原子层沉积技术(PEALD)在低温下(170-230℃)制备的InN超薄层插入至CdSeTe基量子点太阳能电池光阳极的FTO/TiO2界面处,进行了ALD沉积窗口和电池性能改善
硫化铅(PbS)胶体量子点作为最典型的溶液加工半导体材料,被广泛应用于发光二极管、光电探测器和太阳能电池的设计和开发.将碘化铅(PbI)作为硫化铅量子点配体的液相交换策略是一种新兴的技术路线[1].然而,在油墨环境中,硫化铅量子点表面配体的结合和脱落是一种动态可逆过程[2],由非结合的硫化铅量子点引起的未钝化的pb2+缺陷会作为复合位点对量子点会产生不利影响.因此,进一步增强硫化铅量子点表面钝化对
基于窄带隙半导体的红外太阳能电池可以捕获和利用低能红外光子,从而弥补常规电池光谱利用方面的不足(图1a),有望显著提升太阳光的利用效率,并成为叠层结构底电池的备选方案.然而,可溶液工艺处理的窄带隙半导体材料极为有限,因此,光伏性能优良、带隙在红外可调的PbE (E=S,Se)量子点成为红外太阳能电池的理想选择.然而,窄带隙、大粒径PbE量子点的表面钝化是器件性能提升面临的挑战.围绕0.95eV P
胶体量子点(CQD)纳米材料具有光谱可调、稳定性高、可溶液加工和与柔性基板兼容性高等特点,被广泛用于太阳能电池、发光二极管和光电探测器等光电器件。在过去的几年中,通过有效调控CQD表面特性、太阳能电池器件的结构优化和界面特性的有效控制,及器件物理等方面的深入研究,CQD太阳能电池的光电能量转换效率得到了大幅提升。在CQD太阳能电池制备过程中,CQD表面配体的取代方法影响着CQD表面特性和CQD薄膜
学位
量子点近红外太阳能电池(QDIRSC)可以作为硅基电池和钙钛矿电池的额外补充,以增强对太阳光谱的充分利用.目前,硅基太阳能电池的效率已接近理论极限;因此,研制高效率的窄带隙近红外电池对开发叠层光伏器件有着极为重要的意义.具有高的单分散性且缺陷密度低的PbS量子点是一种带隙可调的理想近红外光伏材料,它可以很好地收集光谱中近红外区域的能量.然而,随着量子点尺寸的增加和能级的变化,传统的电子传输层So-