极性小分子对有机太阳能电池性能的提升

来源 :第二届新型太阳能电池学术研讨会 | 被引量 : 0次 | 上传用户:dddddddaaaaaaaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The polar molecules including ferroelectric materials with large dipole moments have been applied as interracial layers to increase the efficiency of organic solar cells by increasing the bounded charge separation, tuning the energy levels etc.Here we report a small polar molecule 2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid (TPACA) that can be either blended in the active layer or at the interface of polymer and electrode to increase the efficiency of the solar cell devices after poling.The dipoles of TPACA can be aligned by applied bias.It was found that the built-in potential of the device increased by 0.2 V after poling under negative bias.Blending TPACA into the active layer has shown to be a universal method to increase the efficiency of polymer solar cells.The efficiency is increased by 30%-90% for all the polymer:fullerene systems tested, with the highest efficiency reaching 7.83% for the poly [4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b]dithiophene-2,6-diyl]-alt-[2-(2-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl]: [6,6]-phenyl-C71-butyric acid methyl ester (PBDTTT-CT:PC7oBM) system.
其他文献
合成了一组基于三苯胺和吩噻嗪为电子给子,氰基丙烯酸为电子受体的聚合物(PTPAPTZ)和小分子(TPAPTZ)染料,系统研究两者在二氧化钛上的吸附性能,通过UV-vis测试其吸附量[1-2],发现两者在二氧化钛上具有相近的吸附量,但在吸附稳定性上具有巨大的差异,小分子染料TPAPTZ在中性、弱碱性、弱酸性溶液下,在12h内基本脱附完全,而聚合物染料PTPAPTZ在同样的条件下只有部分脱附,进一步提
柔性DSC与传统DSC最大的区别在于采用的衬底不同,衬底的改变极大的影响了其透过性、导电性、TiO2膜的制备等,进而很大程度的改变了电池的效率.本文对可应用于染料敏化太阳电池的柔性基底PET、PEN,并且与FTO导电玻璃进了对比,得出PEN+ITO适合用于制备柔性DSC.
染料敏化太阳能电池中,拓宽光谱响应以及降低电池器件中的电子复合反应是提升电池效率的关键.其中拓宽光谱响应可以通过引入额外的吸电子基团,增强给体基团,延长桥链来实现.而降低复合通常在染料分子中引入长的烷基链,由于长烷基链的疏水作用,可以防止电解液中碘离子对与染料接触,从而降低复合.因此在THCA的基础上引入己基噻吩基团,构建染料HECA,由于给体上的烷氧基以及己基噻吩基团中的己基的双重封锁效应,这个
在有机太阳能电池中,阴极缓冲层可以有效的降低有机活性层和阴极之间电子注入的势垒,是提高器件性能的重要手段.ZnO具有很好的传输电子、阻挡空穴的能力,常用作阴极缓冲层.但是由于ZnO薄膜表面缺陷较多易导致器件性能下降,在实际应用中存在不足之处[1].共轭聚合物类材料PFN(聚[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴])为一种广泛应用的聚合物阴极缓冲层材料.PFN可以有效降低阴极的功函
有机薄膜太阳能电池因其灵活、质轻、价格低廉和较容易大面积制备而成为未来实现卷对卷印刷的最优候选者。近年,有机太阳能电池器件效率得到快速提升,单结电池的效率已经超过10%。[1]倒置结构的器件因其稳定性较高,研究比较广泛。目前,倒置结构中溶液法空穴传输层的实现尚是一个难点,主要表现为PEDOT:PSS在有机层上的成膜性差,以及金属氧化物纳米材料团聚现象严重。[2-3]本报告将介绍一种基于MoO3纳米
针对当前PEDOT:PSS溶液在有机活性层上存在的浸润性较差及电导率较低的缺点,我们介绍了一种可同时提高PEDOT:PSS溶液浸润性及电导率的表面活性剂PEG-TmDD[1].通过调节PEG-TmDD的掺入比例,可以将PEDOT:PSS溶液与活性层(P3 HT:ICBA)的接触角由99.6 °降低到25 °;同时,通过升高温度,可以将PEDOT:PSS的电导率提高到500 Scm-1以上.将掺有4
11-mercaptoundecanoic acid (MUA)-stabilized gold nanoparticles (Au NPs) embedded in Copper phthalocyanine (CuPc) were used as the buffer layer between a poly(3-hexyl-thiophene) (P3HT) /[6,6]-phenyl C6
聚乙烯亚胺(PEI)材料被广泛地用于制备低功函数电极.通常情况下,PEI修饰层是从PEI的2-甲氧基乙醇溶液中旋涂制备的.在这个工作中我们探索了在氧化铟锡(ITO)电极上制备PEI修饰层的新工艺.我们通过将ITO浸泡在PEI的水溶液来制备PEI修饰层.这种方法制备的PEI层同样可以有效降低ITO电极的功函数.H2O作为生产溶剂比2-甲氧基乙醇溶剂更环保并且更经济.浸泡的制备工艺也适合于大面积器件的
最近,三元有机太阳能电池受到了越来越多的关注,这是由于它们既具有叠层太阳能电池扩展吸收光谱范围的优势又具有单节器件制备工艺简单的特点[1-5].大多数报道的三元有机太阳能电池是基于P3HT:PCBM体系的,其器件性能远低于窄带隙给体材料的二元器件.我们基于两个窄带隙小分子材料(SMPV1和DIB-SQ)为给体材料,PC71BM为受体材料研究三元方法对有机太阳能电池性能的影响.当DIB-SQ在给体中
相对于传统的硅基和无机半导体太阳能电池,由于太阳能光伏材料方面的不断推陈出新,近年来,涌现出了以有机半导体、量子点纳米晶、钙钛矿等光活性材料为代表的新一代太阳能电池.在光电转换效率上,钙钛矿太阳电池突破了20%,是近两年的明星材料.以有机半导体材料为电子给体、富勒烯衍生物为电子受体的有机太阳能电池,在前几年快速发展的基础上,近几年来,其光电转换效率亦突破了10%.虽然在效率上,有机太阳能电池要远逊