【摘 要】
:
在学习过程中,每个学生的学习进度不同,而浓厚的学习兴趣是推动学生进步的秘诀。兴趣是学生最好的老师,也是学生学习的动力。研究表明,学生在学习兴趣浓厚时,会积极、高兴地去求学,而学生在学习不感兴趣的内容时,会听不进去,出现厌学心理甚至变得情绪低沉。双减背景下老师应以培养学生的学习兴趣为目标,然后通过改善教学方式提高教学质量。因此,对如何培养学生的学习兴趣提出几条建议。
【机 构】
:
广东省教师继续教育学会教师发展论坛学术研讨会论文集(七)
【出 处】
:
广东省教师继续教育学会教师发展论坛学术研讨会论文集(七)
论文部分内容阅读
在学习过程中,每个学生的学习进度不同,而浓厚的学习兴趣是推动学生进步的秘诀。兴趣是学生最好的老师,也是学生学习的动力。研究表明,学生在学习兴趣浓厚时,会积极、高兴地去求学,而学生在学习不感兴趣的内容时,会听不进去,出现厌学心理甚至变得情绪低沉。双减背景下老师应以培养学生的学习兴趣为目标,然后通过改善教学方式提高教学质量。因此,对如何培养学生的学习兴趣提出几条建议。
其他文献
Al2O3/FeAl涂层由于具有高热稳定性、低成本、低渗透率的特点被作为最有前途的阻氚涂层候选材料之一。在氚增殖包层中,高温液态Pb-Li以其良好的导热性、结构适应性以及较好的氚增殖能力常常被用于氚增殖剂。然而Al2O3/FeAl涂层与高温液态Pb-Li之间的相容性较差,影响了涂层的使用寿命,因此需要提高Al2O3/FeAl涂层抗高温液态Pb-Li的腐蚀性能。由于Er2O3与高温液态Pb-Li之间
堆肥是一种通过微生物作用将有机固体废弃物进行无害化处理后再利用的生物技术,而传统堆肥在木质纤维素降解方面的表现较差,因此解决这一问题十分重要。伊蒙粘土(I/S)作为一种层状结构且具有较大比表面积和孔隙率的粘土矿物,其优异的结构性能有利于堆肥过程中微环境的改善和微生物的生存和生长,然而目前对I/S是否能优化堆肥生境并促进木质纤维素降解和腐殖化进程知之甚少。因此本论文针对I/S是否能优化堆肥生境并促进
氨肽酶(Aminopeptidases,EC 3.4.11)能够去除蛋白质或多肽N-末端氨基酸,广泛应用于食品加工、饲料生产、活性肽制备等领域,尤其是耐热氨肽酶的应用前景更加广阔。课题组前期从铜绿假单胞菌(Pseudomonas aeruginosa)GF31中分离纯化得到了一种活性较高的胞外亮氨酸氨肽酶(PLAP),同时能够降解拟除虫菊酯。本文将PLAP在大肠杆菌(Escherichia col
二氧化碳(CO2)是一种造成全球性温室效应的主要气体,对其进行捕获、利用和封存(CCUS)就显得尤为重要。但是,CO2所具有的惰性属性对其转化存在一定限制作用。而将CO2与环氧化物反应制备环状碳酸酯不仅能解决这一问题,而且还能实现100%原子经济的同时实现CO2高值化利用。然而,已被开发用于催化CO2与环氧化物反应的均相催化剂一般存在难分离、后处理成本高的问题。所以,开发多相催化剂对于实现工业化应
近年来,随着工业化的不断发展,因含铬废水不达标排放导致耕地铬污染的现象也是日益频现,严重危害耕地环境健康和粮食生产安全。利用人工湿地对含铬污水具有较好的净化效果,可以减轻土壤铬污染。本研究以1/2 Hoagland’s营养液并添加葡萄糖为灌溉水源,利用耐旱耐湿的薏苡作为人工湿地植物,构建小型垂直流人工湿地(VC)和水平潜流人工湿地(HC),并分别添加0、10、20 mg·L-1Cr6+(以K2Cr
作为一种内源性的心理驱动力,学习内驱力对大学生的培养发挥着重要作用。基于扎根理论的研究发现:大学生的感知自主性是内驱力触发的前提,直接决定其他主观认知有无发挥作用的空间;能力信念和自我实现的价值追求共同构成自我图式的内涵,它们决定内驱力的水平,对内驱力的发展发挥直接的促进作用;通过课程教学设计、支持服务与管理监督可以满足大学生胜任力发展、自主控制感和自我实现的需要,为学习内驱力的唤醒和发展创造良好
为实现碳达峰、碳中和目标,除加大节能减排力度之外,还需进一步加强对CO2、CH4等温室气体的资源化利用。甲烷干重整(DRM)利用CO2和CH4两种温室气体生产高价值的H2和CO的混合气,在科学和工业领域都受到广泛的研究。Ni基催化剂是应用最广泛的非贵金属催化剂,虽其催化活性较高,但在高温反应过程中易产生积碳导致催化剂失活,影响其工业化应用。本文以γ-Al2O3作为载体,采用“双溶剂”法制备Ni/γ
在水污染成为世界性环境治理难题的今日,膜分离技术由于绿色无污染、操作简便、无相变等特点从众多水处理工艺中脱颖而出,成为了认可度较高且最有前途的应用技术。无机膜由于具有化学稳定性与热稳定性好、强度高、不易被污染和可重复使用等优点而被广泛应用。目前,无机膜的制备方法仍以烧结工艺为主,烧结过程既是膜成型的关键,能使陶瓷膜粘接的更加紧密;同时烧结过程中的高温可以将预先添加的造孔剂分解以形成孔道。但这一过程
超级电容器作为一种新型的储能器件,相比于传统的蓄电池、锂离子电池、燃料电池等,具有大功率密度、快速充放电和优异的循环稳定性等优点,已经在新能源汽车、航空航天、工业电力等众多领域占有重要的地位。超级电容器性能主要取决于电极材料,因此研究新型的超级电容器电极材料是近年来的一个热点。过渡金属化合物拥有较高的理论比容量和多种电化学反应活性,在储能领域受到了广泛的研究和发展。与碳材料相比,过渡金属化合物机械