不同纤维增强泡沫夹心三明治结构的低速冲击及冲击后压缩行为研究

来源 :第二届中国国际复合材料科技大会 (CCCM-2) | 被引量 : 0次 | 上传用户:woshi254211
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  泡沫材料在冲击过程中能够较好的吸收外部冲击能量,与一般材料相比,泡沫夹心三明治结构具有较好的耐冲击性能。作为三明治层合板用的玻璃纤维与碳纤维面板具有不同的力学性能:玻璃纤维韧性好而强度较差,碳纤维强度较好而韧性差。因此在外部冲击载荷作用下,采用二者作为面板的三明治结构的失效机理不尽相同,材料的耐冲击容限也不一致,因此需要对二者进行研究。冲击后的压缩强度(CAI)是衡量材料冲击完整性及耐冲击性能的重要指标。本文在对两种不同纤维增强的三明治结构的低速冲击性能研究基础上,对材料的冲击后压缩行为进行了实验研究,旨在找出两种材料在低速冲击载荷作用下的失效机理及其冲击后的残余强度大小。
其他文献
基于临界面多轴疲劳准则,本文提出了一个新的基于临界面模型的复合材料层合板混合模式分层扩展速率预测模型。本文所发展的等效能量释放率基于力学机理,将混合模式分层扩展等效为Ⅰ型分层扩展建立起联系,再利用Paris模型即可对任意混合模式的分层扩展进行预测。本文所发展的模型即可预测任意混合比下的分层扩展速率。模型预测结果与试验结果的对比表明两者具有良好的一致性。
碳纤维增强复合材料因其高比强度和比刚度的特点而广泛应用于宇航、航空和国防工业中。分层是复合材料层压板结构主要的失效模式,不同加载模式下的断裂韧性和分层行为不同,而加载混合比是影响复合材料分层行为的一个重要因素。本文针对碳纤维增强复合材料多向层压板0°/45°界面的断裂韧性和分层行为进行研究,分别采用DCB、ENF和MMB试验测试复合材料层间的Ⅰ型、Ⅱ型和Ⅰ/Ⅱ混合型的初始分层断裂韧性和分层扩展阻力
提出了一种基于剩余应变的疲劳累积模型。该模型认为材料的破坏是由于其累积应变达到了静强度破坏的极限应变,剩余应变即用来表征极限应变与累积应变之差。从剩余刚度理论出发,使用了疲劳模量的概念,进而推导出材料在疲劳过程中剩余应变的退化公式。进行了碳纤维增强复合材料非破坏性的复合材料模量测试,在单向层试验件的寿命周期内多次测量了刚度变化趋势,获得了剩余应变模型的试验拟合参数。将剩余应变模型嵌入到疲劳渐进损伤
According to the structure characteristics and fiber structure of the composite T-joint manufacturing by resin transfer moulding(RTM), and based on the ANSYS finite element numerical analysis software
The low velocity impact performance of domestic aramid fibre reinforced composite laminates was investigated experimentally, to study the effects of laminate thicknesses and impact energy on the impac
In this study, a new mixed-mode delamination failure criterion is developed based on an energy release rate prediction methodology for orthotropic materials, a critical plane approach and a nominal ap
Based on the fatigue accumulated damage mechanisms of composite materials, a residual strain model is presented.The residual strain is associated with fatigue modulus,resulting from which the paramete
Transverse vibration vertical to middle surface of resin matrix composite plate is a prevalent problem.This paper presents a vibration differential equation under accurate boundary conditions with ela
With excellent in-plane mechanical properties, Carbon fiber reinforced plastic (CFRP) laminates have been widely used in many structural engineering fields.[1] However, their out-plane i.e.interlamina
There are obvious disadvantages in the ASME pressure vessel code which is used to calculate the fatigue life of cylinders by adopting an equivalent strain method, because it cannot take account of the