周丛生物对氧化铁纳米颗粒胁迫的适应机制

来源 :NCEC2019第十届全国环境化学大会 | 被引量 : 0次 | 上传用户:xiner1312
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  纳米颗粒可通过多种途径进入稻田等生态系统,对稻田生态系统具有潜在生态风险,并可能会危及粮食安全和人类健康。。周丛生物是在稻田土水界面大量存在的微生物聚集体,对稻田土水界面的物质迁移和转化有重要作用,其与纳米颗粒的相互作用将直接影响纳米颗粒在稻田土水界面的环境行为,并进一步影响其在整个稻田生态系统的生态风险。
其他文献
Due to the potential for interactions between crop plants and engineered nanomaterials(ENMs),there is increasing interest in understanding the bioavailability and effects of ENMs released into soil sy
氮化碳纳米材料由于其独特的结构特性和表面性质,在诸多领域引起广泛的关注和深入研究。氮化碳纳米材料在有机物光催化降解中具有独特的优势,但是在可见光条件下其效率低下的问题制约氮化碳在环境污染治理中的应用。
研究表明,FeS2 能够高效催化过硫酸盐产生自由基降解有机污染物,电子顺磁共振(EPR)技术表明有硫酸根自由基和羟基自由基的生成。
Our previous studies indicated that the foliar application of silica nanoparticles(Si NPs)could obviously reduce arsenic(As)accumulation in rice [1].
稻田生态系统中过量的氮肥投入,导致大量硝态氮经田面水和农业沟渠排水进入地表水或地下水中,造成硝酸盐累积甚至污染,并可能危及人类健康。
Manganese oxides are naturally occurring powerful oxidants and scavengers,which can control the mobility and bioavailability of arsenic(As).
近年来,纳米CuO颗粒的广泛使用造成的环境影响引起了人们的极大关注,但研究Cu不同化学形态和生物可利用性有关的潜在机制仍然很少。
邻苯二甲酸酯类(PAEs)化合物是一类环境激素,它们在塑料产业,化妆品行业以及农用品中有着广泛的应用,土壤环境中被普遍检测到,浓度范围在0-157 mg/kg.
位於台灣省北部某工業區內一處工廠地下水受三氯乙烯(Trichloroethene,TCE)污染,場址污染調查所檢測出之最高地下水TCE濃度為3.65mg/L,評估場內地下水TCE之污染擴散影響範圍約4,000平方公尺,污染深度至第一阻水層(地表下~18m).
对降解微生物进行固定化处理能有效解决游离降解微生物在环境修复中适应性差的问题,但传统的微生物固定化方法如吸附法或包埋法均不同程度地存在缺陷(保护作用有限或传质性能较差),极大地限制了生物修复技术的实际应用。