脱金属-脱硅协同制备多孔凹凸棒石及其性能研究

来源 :第九届全国环境催化与环境材料学术会议 | 被引量 : 0次 | 上传用户:sanshao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
凹凸棒石是一种含水富镁铝硅酸盐黏土矿物,晶体呈纤维状,其理论化学式为Si8Mg5O20(OH)2(H2O)4·4H2O,具有2:1 型层链结构[1].由于晶体结构内部八面体片是不连续的,形成了很多有序的孔道(0.37 nm×0.64 nm).另外,凹凸棒石资源丰富、廉价易得且环境友好,因此,在吸附和催化等方面,凹凸棒石有望成为沸石最有前途的替代品[2,3].
其他文献
T11 Target structure,a membrane glycoprotein isolated from sheep erythrocytes,reverses the immune suppressed state of brain tumor induced animals by boosting the functional status of the immune cells.
会议
Nonlinear mixed effects modeling(NLME)is a statistical framework involving both fixed-effects and random effects for population parameters incorporating uncertainty associated with intra-and inter-sub
会议
Demands on accuracy of models,particularly in life sciences,lead to models involving large numbers of parameters.
会议
We shall start with a brief overview of the importance of calibration methods in mathematical finance in general and risk management in particular.After that we shall focus on the problem of recoverin
会议
We present a high-order compact finite difference approach to parabolic partial differential equations with mixed second-order derivative terms and time-and space-dependent coefficients in arbitrary s
会议
We introduce random transformations called reversible shaking transformations which are used to design two schemes for estimating rare event probability.One is based on interacting particle systems(IP
会议
We are dealing with numerical methods for linear and nonlinear Black-Scholes model.We apply finite difference method,esp.Alternating direction explicit methods(ADE),which were suggested in 1957 by Sau
会议
目的:水溶性酚酸类成分是丹参(Salvia miltiorrhiza)中的主要活性成分之一。由于结构中具有多个酯键和不饱和间,酚酸类成分具有众多含量很低的化学转化产物。这增加酚酸类成分的分析难度。本研究旨在开发一种深入分析丹参及其相关制剂中酚酸类成分的方法。
研发具有可见光响应的光催化材料一直是国际光催化研究的重点,在以传统的二氧化钛、硫化镉和钛酸盐半导体氧化物光催化分解水制氢的研究基础上,近年来已经报道的新型光催化材料几乎涵盖了元素周期表中的s 、p、d 区以及镧系所有元素,形成了数量可观的光催化材料体系,光催化剂的结构形式多样,其中主要有氧化物、氮化物、硫化物、磷化物、氮氧化物、卤氧化物、聚合物、多孔金属有机骨架材料以及碳基光催化体系等。
近年来,随着环境问题的日渐严重,各类环境友好型材料层出不穷,同时越来越多的领域也开始不断地尝试将粒子微米化或粒子纳米化的理念应用到实际中[1].超疏水材料因其具有环境友好,前景广阔,安全无污染等一系列优点而逐渐走进了人们的视野并受到了越来越多的关注,因此微纳米粒子在超疏水材料中的应用也具有十分重要的意义[2,3].
会议