【摘 要】
:
阐述三聚磷酸钠产品的生产、消费和目前存在的问题,和净化湿法磷酸(PPA)生产三聚磷酸钠的原材料指标要求,及其生产运用,与热法磷酸生产三聚磷酸钠产品指标对比分析。
【机 构】
:
贵州宏福剑峰化工股份有限公司,贵州 都匀 558000
【出 处】
:
2007年中国国际磷化工(兴发)发展高峰论坛暨中国磷化工行业年度工作会议
论文部分内容阅读
阐述三聚磷酸钠产品的生产、消费和目前存在的问题,和净化湿法磷酸(PPA)生产三聚磷酸钠的原材料指标要求,及其生产运用,与热法磷酸生产三聚磷酸钠产品指标对比分析。
其他文献
用原位气泡拉伸(ISBS)法制备LDPE/纳米Mg(OH)2复合材料.结果表明,ISBS法对LDPE基体中的纳米Mg(OH)2具有良好的纳米分散能力,被分散的纳米粒子没有发生重新团聚.ISBS法制备的纳米复合材料的力学性能优于熔融共混法制备的复合材料的性能.在一定的纳米Mg(OH)2添加量范围内,拉伸强度随着纳米Mg(OH)2量的增加而增大,在纳米Mg(OH)2添加量为15份时达到最大值,然后随着
选用SEBS-g-MAH和EP为复合增容剂,采用熔融挤出的方法制备了PA610/PC合金,研究了它的力学性能、熔融结晶及微观结构形态.结果表明,当PA610/SEBS-g-MAH(EP)/PC组分比为75/9(2)/25时,合金的冲击强度比不加增容剂时提高了281.4%,断裂伸长率提高了346.0%.而增容剂的加入使合金中PA610的结晶温度升高,结晶速率增大而结晶度降低,由于异相成核作用使结晶发
大多数电子产品越来越趋向于小型化、高性能,造成电路密度增加,可靠性要求极高。微米和纳米系统中的微电子产品故障的根源可能在于温度、机械、化学和电力原因或几者的结合.典型故障有开裂、脱层、弯曲、变形、破裂、受压、空洞、疲劳、热迁移以及电迁移.因此,不同微电子应用领域(汽车行业、空军基地或消费电子)的新型电子产品的开发,需要仔细研究材料的微米和纳米级属性[1].有限元模拟与实验分析方法相结合,应当能够说
芯片级封装技术最近获得的发展使微电子产品的焊点。密度快速增加.这种技术的小型化特点。使生产原料的用量得到大幅节省,因此业界对这种技术的应用正呈上升趋势;而市场对高速度通讯以及节约制造成本、进一步减小间距的需求很有可能促使焊点。结构降低至200μM以下。使用微细粒焊膏的模板印刷可用于倒装晶片封装,不失为一种成本低廉且具有一定灵活性的倒装晶片焊点。互连解决方案。此外,使用模板印刷焊膏的晶圆凸点技术在附
小型化、功能致密化、综合化、环境友好、迅速上市、低成本与高可靠性,这一切持续代表着电子产品尤其是手持与消费产品的主流趋势。对更轻、更小的产品(或功能更强大而体积相同的产品)的需求,在PCB(印刷电路板)封装和SIP(系统级封装)中正推动着01 005、0201、更细间距(0.3-0.4 mm)QFP和SMT连接器、更细间距(0.4mm)CSP、倒装芯片和COB(板上芯片)的使用,以及更紧密的元件间
多年来,含铅焊膏一直用于将电子元件与印刷电路板(PCB)焊接在一起。但由于公众环保意识的增强,加上立法的作用(RoHS & WEEE),电子设备制造商正在寻找其他材料来代替铅.热门替代材料是锡银铜合金.这种合金的熔点。远高于锡/铅焊料。低温金属合金可用作不同的无铅焊料,但可靠性和可加工性方面的一些问题尚未完全解决.因此,人们对于将导电胶用作无铅焊料的替代选择的兴趣正不断增长。导电胶(CA)由高分子
基于对传统SMD器件和BGA/LFBGA元件不同焊接材料的试验分析,有关无铅互连质量的讨论将在所有可靠性结果确定之后进行。焊接材料的分析结果表明,演化的微观结构和机械性能会随着环境暴露(例如热循环和高温储存)而发生巨大变化。单靠疲劳属性的依赖特征和由所有材料和工艺参数组成的IMC,人们无法充分理解运营条件提高后,无铅焊接接缝在不同的板涂覆层上的损伤机理.便携式电子学提出进一步需求是进行落锤试验,试
通过共晶锡锌合金的张力与蠕变性能测试,我们能够得出这种焊料与锡银合金及SAC合金(SAC-锡/银/铜合金)在机械性能方面的不同。试验显示,锡锌焊料的强度大于含铅焊料及其他在研究范围之内的无铅焊料,其抗蠕变性也优于锡铅合金.微/纳米硬度测量结果解释了共晶锡锌合金具备高强度的原因。在回流焊特别是波峰焊过程中,高温是获得可湿性及高可靠性焊点的必要因素。焊接过程结束后,锡锌焊料合金会表现出消光加工的特性,
本文对磷化工和循环经济的关系进行了探讨,文章从如下几个方面进行了论述:一、循环经济已成为企业发展的必由之路二、磷化工实施循环经济的途径探讨三、政府在循环经济建设中的重要作用四、物流是循环经济的重要组成部分
印刷电路板(PCB)及其生产方式在过去60间未发生显著变化;最现代的技术仍然是把电路设计蚀刻到一层纯铜上;近年来在印刷电路板设计方面的最大变化就是自上世纪九十年代末引入的高密度集成(HDI)技术。激光钻孔技术被大规模应用于钻透一层又一层的电路板材料,从而极大地降低了电气垂直连通性对空间的要求。小型化、结构化、封装化工艺趋势、及电气与电子元件在尺寸方面的缩小主要来自于电信行业的需求;由于移动消费设备