【摘 要】
:
以哌嗪为识别基团设计合成Cu2+、pH双光子荧光探针,为合成荧光探针提供了新的思路.我们以哌嗪为识别基团,分别以丹磺酰氯、萘酰亚胺为荧光基团,合成了一系列新的Cu2+、pH荧光探针,并研究了该类探针的荧光性质、识别机理,将其成功应用于水溶液和生物细胞及组织中检测Cu2+、pH.[1-4] 我们将在报告中详细汇报本课题组在这一领域的研究进展.
【机 构】
:
陕西科技大学轻工科学与工程学院,陕西省西安市,710021 兰州大学功能有机分子化学国家重点实验室
【出 处】
:
2017第十五届全国光化学学术讨论会
论文部分内容阅读
以哌嗪为识别基团设计合成Cu2+、pH双光子荧光探针,为合成荧光探针提供了新的思路.我们以哌嗪为识别基团,分别以丹磺酰氯、萘酰亚胺为荧光基团,合成了一系列新的Cu2+、pH荧光探针,并研究了该类探针的荧光性质、识别机理,将其成功应用于水溶液和生物细胞及组织中检测Cu2+、pH.[1-4] 我们将在报告中详细汇报本课题组在这一领域的研究进展.
其他文献
Reverse electrodialysis(RED)is an emerging technology to generate electric power from two different salinity solutions(e.g.river water and seawater),which is deserving full attention in the past decad
Particulate matter(PM) is an unwanted byproduct from incomplete combustion of fuels especially in diesel engines.Significant adverse effects on human health and environment could be caused by the pres
为了实现稻壳资源的综合利用,以稻壳粉和热固性酚醛树脂为原料,900℃和N2 氛围下煅烧,制备出碳/二氧化硅复合颗粒,可作为金属基和橡塑材料的功能添加剂。采用常规化学镀法在复合颗粒表面进行镀铜,获得镀铜复合颗粒。
在三氟化硼乙醚和乙腈混合体系中电合成了醇溶性的聚苯绕蒽酮(PBA)[1]。基于PBA设计了一个“开-关”型的荧光传感器用来高选择和高灵敏检测Pd2+[2]。其传感机理可能是因为Pd2+可以和PBA中的两个或多个链节相互作用增强了聚合物链的聚集,从而引起PBA荧光的强淬灭[3,4]。这种基于PBA的荧光传感器被成功用来检测农作物和环境实际样品中的Pd2+。
随着化石能源的过度开采和使用,产生作为温室气体之一的CO2 大量排放到自然界,生态系统的平衡受到影响,并导致气候变暖日益加剧。利用太阳光催化将CO2 转化成CO 和小分子有机化合物长期以来一直备受关注。我国地域辽阔,有丰富的稀土矿藏资源,我们将稀土金属配合物用于催化CO2 还原反应,构建了可见光催化还原CO2 为CO 的均相催化体系。通过系列优化实验研究,在光催化还原产生CO 和H2 的竞争反应中
光催化因低温深度反应、净化彻底、绿色环保、氧化性强、寿命长以及广普性好等优点而被广泛关注,在解决环境问题和应对能源危机中发挥巨大的作用[1]。已有的研究表明温度是光催化不可或缺的因素[2]。然而,现有的研究技术大多是采用间接取样离线检测,只获取了光催化反应的速率常数k以及活化能,没有光催化热力学和动力学的关联统一无法直接提供过程的热力学信息导致光催化的热/动力学及机理的研究仍不深入[3]。
硼氮掺杂有机化合物作为一种新的研究领域受到交叉学科学者的广泛关注,这主要是因为它在有机光电材料、催化、储氢、传感器以及生物药物合成中有潜在的应用价值。然而,目前在合成此类分子时,仍然面临着许多问题,如合成条件苛刻、路线冗长、产率低,产物不稳定等,因此限制了此类分子的进一步开发和应用。基于此,本文通过条件温和、产率极高的硼氢化加成反应来设计、合成一系列新型有机氮杂硼烷分子,并考察了它们的光、热反应活
人工模拟光捕获体系的构筑为人们深入理解自然界中光合作用提供了平台,同时也在光催化、太阳能电池、化学传感器、光电材料等领域有广泛的应用前景。为抑制染料分子的堆积作用,减少其激发态白淬灭,提高能量传递效率,我们以连接有氰基三氮唑客体基团的能量给受体以及硫硫键桥联的柱芳烃为组装基元,设计合成了基于柱芳烃超分子聚合物纳米粒子的光捕获体系。柱芳烃一方面连接能量给受体分子形成超分子聚合物进而组装成水中分散的纳
过渡金属催化的反应之中,烷基卤代物参与的交叉偶联反应具有诸多挑战,例如烷基卤代物较难与金属中心发生氧化加成,即使发生氧化加成,所得到的烷基金属物种极易发生β-H消除和质子化等副反应,因而通过交叉偶联反应构建C(sp3)—C(sp3)就显得尤为困难。[1] 近年来,越来越多的报道证明烷基卤代物能以烷基自由基的形式参与各类偶联反应。
羧酸类化合物是主要的大气有机污染物之一[1,2],也是其他有机污染物降解过程中的重要中间体[3,4].在TiO2光催化降解有机污染物过程中,羧酸类化合物的脱羧过程被认为是加快降解速率的关键步骤[5-7],所以研究其反应机理可以指导我们更好的通过改变反应条件来提高其降解速率.