【摘 要】
:
采用原位生长法制备了金属有机骨架化合物(MOFs)修饰的碳酸钙(GCC、PCC)加填纸(MOFs-PCCP及MOFs-GCCP),并通过红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)、热重(TGA)、比表面积(BET)分析了MOFs与纸张纤维之间的结合方式及MOFs-加填纸的表面形貌、比表面积、热性能和吸附行为.结果表明,MOFs与纸张纤维是以氢键的方式相互结合,分子内氢键和分子
【机 构】
:
陕西科技大学轻工与能源学院,陕西省造纸技术及特种纸品开发重点实验室,陕西西安,710021 华南理
论文部分内容阅读
采用原位生长法制备了金属有机骨架化合物(MOFs)修饰的碳酸钙(GCC、PCC)加填纸(MOFs-PCCP及MOFs-GCCP),并通过红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)、热重(TGA)、比表面积(BET)分析了MOFs与纸张纤维之间的结合方式及MOFs-加填纸的表面形貌、比表面积、热性能和吸附行为.结果表明,MOFs与纸张纤维是以氢键的方式相互结合,分子内氢键和分子间氢键协同作用增强了MOFs修饰加填纸的热性能.经MOFs修饰后,加填纸的比表面积增大,吸附性能显著提高,这表明,MOFs修饰加填纸是一种潜在的具有气体吸附性的材料,能够广泛应用于除臭、甲醛吸附、氢气储存等领域.
其他文献
利用PFI对杨木化机浆进行打浆预处理以改变纤维特性,研究了纤维主要特性对纤维素酶水解的影响.结果表明,纤维原料的细纤维化程度、润胀程度、比表面积以及细小纤维含量均随着PFI打浆度的增加而明显增加,结晶度和纤维长度有所降低;PFI打浆预处理使纤维表面形貌发生了明显的变化,利用扫描电镜(SEM)观察发现,打浆度越高,纤维表面粗糙程度越大,细纤维化作用越明显;随着打浆预处理程度的增强,杨木化机浆的酶水解
探讨了Mg(OH)2预浸渍联合联合盘磨预处理对桉木酶水解效率的影响.结果表明:当浸渍阶段Mg(OH)2用量为5%时,盘磨预处理能耗较单纯盘磨预处理时降低了53.54%(约560kWh/t),预处理原料的酶解效率可高达91.53%.由于Mg(OH)2的微溶性和弱碱性,Mg(OH)2预浸渍联合盘磨预处理对原料的物理结构影响较大,产生较多的细小组分和纤维碎片,提高了原料比表面积,有效破坏纤维细胞壁的结晶
研究了全棉秆APMP制浆脱果胶预处理的最佳工艺条件.结果表明:全棉秆APMP制浆脱果胶预处理的最佳工艺条件为:草酸钠(Na2C2O4)用量3%(相对于原料绝干质量)、温度90℃、时间30~40min,此条件下制取全棉秆APMP浆的白度为66.65,经H2O2补充漂白后白度可以达到73.30%.
研究了脂肪酶和纤维素酶用于改善棉浆粕反应性能,对比了不同酶处理方式对棉浆粕Fock反应性能、聚合度、BET比表面积、丙酮抽出物含量以及保水值的影响.结果表明,当用量50U/g的脂肪酶和用量10FPU/g的纤维素酶联用时,棉浆粕的Foek反应性能从10.79%提升到42.41%~43.00%;与单种酶处理方式相比,脂肪酶和纤维素酶联用在有效提升棉浆粕反应性能的同时,对棉浆粕的纤维素聚合度、BET比表
通过改变润胀条件,研究了低聚合度纤维素浆粕在NMMO-H2O溶解体系中的润胀行为,并对润胀前后纤维素的聚合度和结晶指数进行了测定.结果表明,当润胀温度90℃、NMMO质量分数75%、润胀时间40min时,低聚合度纤维素浆粕的润胀效果最好.经过不同质量分数NMMO溶液润胀处理后,纤维素的聚合度和结晶指数均有一定程度下降,而适宜的润胀条件可以在保证纤维润胀效果的同时,有效避免纤维素的过度降解.
采用多种显微成像技术揭示了农林生物质原料奇岗微观结构的复杂性和组分分布不均一性,探讨了稀酸预处理对奇岗细胞壁超微结构和区域化学的影响.结果表明,奇岗维管束由多种细胞类型构成,且各类型细胞壁中均包含复杂的多壁层结构,并且木质素的分布规律与纤维素呈相反趋势.以打破奇岗细胞壁抗降解性为目的的稀酸预处理,可通过半纤维素与木质素基质的选择性脱除或迁移,充分暴露出被包覆的纤维素,并使临近的细胞由胞间层区域剥离
主要介绍作者和她的团队30年来从事造纸化学品、淀粉衍生物新产品、新工艺与应用技术装备研究开发,以及服务造纸工业的情况,并提出了今后的研发思路和目标.造纸企业急需降低造纸成本,提高质量、节能减排以及提高盈利水平和竞争能力。重点加强下列项目的研发:①木材纤维节约技术和产品的研发;②节能减排技术和产品;③高档纸功能性化学品、特种纸专用化学品的研发;④造纸化学品绿色化共性和关键性技术研发;⑤现代大型高速纸
研究了溴丙炔与纸浆纤维的Williamson醚化反应制备炔基化纸浆纤维(Yne-PF)及其可点击性能.结果表明,Yne-PF能够在CuS04/抗坏血酸钠体(CuSO4/VcNa)系催化下与对叠氮苯甲酸发生点击反应,从而实现纸浆纤维的化学改性.傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)等分析表明醚化反应、点击反应均成功进行.使用NaOH活化纸浆纤维后醚化反应得到的Yne-PF取
以阔叶木溶解浆为原料,利用超声波技术对纤维素纤维进行预处理,以期提高纤维素酸水解的选择性.研究发现,超声波预处理可破坏纤维素纤维的形态结构,使纤维细胞壁发生位移,起到一定的打浆作用,提高了纤维的反应活性.经超声波预处理后纤维在FeCl3/盐酸反应体系中的溶解性增大,超声波预处理20min时,水解纤维素的得率由94.0%降至90.3%;细小纤维平均长度由49μm降至37μm;水解纤维素的结晶度由82
将球磨后的脱脂杨木木粉溶于质量分数为8%氯化锂(LiCl)/二甲亚砜(DMSO)溶剂体系中,通过旋涂法将溶液涂敷在石英晶体微天平(QCM)传感器表面,制得在化学组成和结构更接近木质纤维原料的超薄木质纤维膜.用原子力显微镜、X射线光电子能谱仪等方法表征了超薄木质纤维膜的特性.借助石英晶体微天平(QCM),涂敷超薄木质纤维膜的传感器可原位、实时测定木质纤维原料在酶水解过程中的变化.