【摘 要】
:
与实验测量相结合,实现随机粗糙面数字化表征及重构;在分析刚性凸头单次/多次冲击接触弹塑性金属薄膜的接触-分离基础上,建立微悬臂梁和覆膜基底间粗糙面重复冲击接触—分离
【出 处】
:
第十二届设计与制造前沿国际会议(ICFDM2016)
论文部分内容阅读
与实验测量相结合,实现随机粗糙面数字化表征及重构;在分析刚性凸头单次/多次冲击接触弹塑性金属薄膜的接触-分离基础上,建立微悬臂梁和覆膜基底间粗糙面重复冲击接触—分离模型,充分考虑微悬臂梁弹性恢复力、微凸体间相互作用、接触粗糙面时变性、材料弹塑性变形以及分子黏着等影响.动态分析每次接触-分离后实际接触面积,薄膜/基底应力、应变及破坏等变化规律;以及各参数与冲击接触速度、微构件尺寸等的关系;研究结果对提高微机械开关的工作可靠性具有一定的理论意义和应用价值.
其他文献
针对液体火箭发动机低温液氧、液氢高速涡轮泵用轴端非接触式机械密封的性能分析和设计问题,以热流体动力润滑理论、机械动力学、热弹变形理论为理论基础,通过数值仿真计算和
一直以来,人们在保证型腔尺寸精度和形状精度的前提下,主要通过降低表面粗糙度、提高表面硬度等手段来改善橡塑模具表面状况.在使用性能方面,更多的是考虑其耐磨性、耐蚀性等
项目以轧机油膜轴承为典型工业应用对象,以减少轴承损伤事故和延长轴承使用寿命为目标,为保证低速重载工况下润滑油膜的完整性和稳定性,引入磁流体润滑,通过设置磁场强度,动
摩擦学表面复层是近年来改善材料摩擦学性能的重要技术途径.但由于摩擦表面的耐磨与减摩本身相互制约,传统的表面复层技术很难同时改善材料表面的耐磨与润滑功能;大多数润滑
辊压机磨辊的耐磨性和粉碎性是影响粉磨装置使用寿命和生产成本的关键因素之一.已有研究成果表明,磨辊耐磨性和粉碎性取决于磨辊的材料、生产工艺、辊面结构形态和待粉碎物料
作为集成电路制造中广泛应用的全局平坦化技术,化学机械平坦化利用化学腐蚀和机械磨削的协同效应实现最佳的抛光效果.随着晶圆尺寸的持续增加,如何检测到可靠的CMP终点并实现
针对机械关键零部件因摩擦磨损导致的快速失效难题,基于多因素协同增强减摩润滑设计思想,本项目在油润滑条件下,将表面织构、固体润滑膜和微纳颗粒润滑技术复合,实现油润滑、
轮胎磨损是动态长期的过程,磨损的微小减少也会大大延长轮胎使用寿命,因此轮胎磨损相关问题一直是学术界和工程界的研究热点.轮胎的接地性态是胎面磨损的发生界面,对轮胎磨损
MXene是一种新型的类石墨烯2-D纳米材料,有望在微电子、信息、能源、材料和生物医药等领域获得重大应用.本研究首先通过化学刻蚀三元层状MAX相陶瓷材料的方法制得结构可控的M
针对高压重载是航空、重工、先进制造装备等领域发展过程中无法避免的苛刻工况条件,极端重载工况将导致润滑剂的寿命急剧缩短并产生润滑失效,而生物降解性能差的矿物油基润滑