【摘 要】
:
本文通过高能球磨MgH2和α-Fe粉的混合物,制备了MgH2-Fe纳米复合材料,并对其吸放氢前后的物相组成、微结构及其储氢性能进行了深入研究.PCT测试结果表明,MgH2-Fe中Mg的氢化焓为-66.8kJ/mol H2,略高于纯MgH2中Mg的氢化焓,而MgH2-Fe吸放氢过程的滞后现象相对于纯MgH2也得到抑制.MgH2-Fe纳米复合材料的起始放氢温度比纯MgH2低180℃,特别是其放氢产物可
【机 构】
:
上海交通大学材料学院轻合金精密成型国家工程研究中心,上海,200240
【出 处】
:
第十五届全国氢能会议暨第7届两岸三地氢能研讨会
论文部分内容阅读
本文通过高能球磨MgH2和α-Fe粉的混合物,制备了MgH2-Fe纳米复合材料,并对其吸放氢前后的物相组成、微结构及其储氢性能进行了深入研究.PCT测试结果表明,MgH2-Fe中Mg的氢化焓为-66.8kJ/mol H2,略高于纯MgH2中Mg的氢化焓,而MgH2-Fe吸放氢过程的滞后现象相对于纯MgH2也得到抑制.MgH2-Fe纳米复合材料的起始放氢温度比纯MgH2低180℃,特别是其放氢产物可在室温附近(303K)以较快速度吸氢,吸氢量在1.5小时内可达1.7wt%.MgH2-Fe优异的低温吸放氢动力学性能主要归因于α-Fe的催化作用.通过透射电子显微镜观察发现,MgH2-Fe在放氢过程中Mg颗粒的(002)晶面是主要沿α-Fe的(200)晶面平行方向形核外延生长,这主要是由于两者的面间距较为接近.这种异质形核及外延生长方式使吸放氢反应的能垒降低,从而提高Mg/MgH2储放氢的动力学性能,降低放氢温度,同时改善吸放氢过程的滞后现象.
其他文献
Usingmicroorganisms as a biocatalyst in the cathode ofbioelectrochemicalsystems(BESs)has been a novel alternative for hydrogen production.To promote the rate and recovery of cathodic hydrogen by bioca
Energy and environmental issues are two important issues today,and the use of solar water splitting is considered to be one of the most effective ways to solve these problems.Ⅱ-Ⅵ group semiconductor c
Molybdenum-modified Co-B alloy nanoparticles are obtained by the ultrasound-assisted chemical reduction method.The relationship between microstructure,catalytic activity and kinetics performance for H
Nowadays the gas mixture from fossil fuel processing is still the main source for large scale hydrogen production,hence the separation of hydrogen with high recovery ratio and purity arises as an impo
Pure hydrogen and carbon nanotubes were produced via thermo-catalytic decomposition(TCD)of methane over corn-like CeO2@Co3O4 catalysts in a vertical fixed-bed reactor.The effect of reaction temperatur
Developing low-cost and high-efficiency hydrogen production methods has become one of the most urgent and challenging tasksbefore real applications of the hydrogen fuel.Hydrogen production by dry refo
Mixing pattern and hydraulic retention time(HRT)show significant effects on photo-fermentation hydrogen production process,various novel bioreactor types with diverse mixing patterns were employed und
NaBH4以其含氢量高(10.6 wt %)成为较有前途的氢源之一[1].在适当催化剂作用下,NaBH4可以通过水解的方式制氢[2,3].本文通过室温化学镀法成功制备了纳米Co-B催化剂,并考察了不同制备条件(pH值、还原剂浓度、施镀时间以及施镀温度)对催化剂的形貌、组成及结构的影响.采用X射线衍射、扫描电镜技术对制备的催化剂进行了物相组成以及结构的分析和表征.
氢能要真正替代传统能源,实现大规模推广应用,还面临着诸多技术挑战,如:1)、氢的大规模生产技术;2)、氢的运输和储存技术;3)、氢能的利用技术(如氢内燃机和燃料电池技术);4)、氢能利用体系基础设施的构建等方面。对于以上技术挑战,氢能在常温常压下的储存与运输技术已然真正成为了制约"氢能经济"大规模发展的瓶颈问题。
Decomposition of HI is the key reaction of hydrogen production in the iodine–sulfur thermochemical water splitting cycle,so studies about the catalysts for HI decomposition have drawn increasing atten