【摘 要】
:
Traditional Belief-Rule-Based Ensemble learning methods usually integrate all sub-BRB systems that are trained to obtain better results than a single belief-rule-based system.As the number of BRB syst
【机 构】
:
School of Mathematics and Computer Science,Fuzhou University,Fuzhou,350116,PR China
【出 处】
:
第六届中国计算机学会大数据学术会议
论文部分内容阅读
Traditional Belief-Rule-Based Ensemble learning methods usually integrate all sub-BRB systems that are trained to obtain better results than a single belief-rule-based system.As the number of BRB systems participating in ensemble learning increases and a large amount of redundant sub-BRB systems are generated because of the reducing of the difference between subsystems,which drastically result in the decreasing prediction speed and the increasing required storage for the BRB systems.In order to solve the above problems,this paper proposed a selective ensemble learning approach for the BRB classification system(BRBCS)base on the Pareto Archived Evolutionary Strategy(PAES)multi-objective optimization,which employed the improved Bagging algorithm to train the base classifier.With the purpose of increasing the degree of difference in the integration of the base classifier,the training set was constructed by repeated sampling of data.In the base classifier selection stage,the base classifiers participating in the integration were binary coding; then the number of base classifiers participating in the integration and the generalization error of the classifier was conducted as the objective function in the above multi-objective optimization problem and finally the elite retention strategy and the adaptive mesh algorithm were adopted to solve PAES optimal solution set.In order to verify the effectiveness of this method,three case studies on classification problems were performed to illustrate how the efficiency of the BRBCS-PAES method.The Comparison results demonstrate that the proposed method can effectively reduce the number of base classifiers participating in the integration and improve the accuracy of BRBCS.
其他文献
由工业设备产生、采集和处理的数据大多是时间序列、空间序列、高维矩阵等非结构化数据.目前单机分析环境如R、Matlab等提供了优质丰富的算法库,但随着数据生成速度和规模的不断升级,上述工具在处理大规模序列和矩阵运算时呈现低效甚至失效的现象.针对可处理数据规模和算法可移植性问题,本文设计了一种大规模时间序列分析框架LTSAF(Large-scale Time Series Analysis Frame
微分进化(DE)是一种基于种群的简单有效的全局优化方法,已在多目标优化领域得到了广泛关注.本文提出一种基于极大极小关联密度的多目标微分进化(MODEMCD)算法.新算法定义了极大极小关联密度,在严格遵守Pareto支配规则基础上,给出了基于极大极小关联密度的外部档案集维护方法,从而避免或减少最终解集的多样性损失.此外,设计了一种自适应选择策略,该策略通过评价个体的关联密度来指导个体优劣的选择过程,
Approximations based on random Fourier features have recently emerged as an efficient and elegant methodology for designing large-scale machine learning task.Unlike approaches used by the Nystr(o)m me
Fault diagnosis techniques based on probabilistic graphical models are often used for uncertain information reasoning.Among them,Bayesian network,an effective tool which has strong characteristics of
将豆瓣短评内容作为分析样本,从用户在线评论数据中挖掘用户喜好,探索适用于中国动漫品牌个性维度研究中各维度权重大小的评价方法,以助于中国动漫企业发现品牌个性维度构建中的不足之处.首先以前人构建好的中国本土品牌个性维度模型“仁、智、勇、乐、雅”作为研究基础,通过《同义词词林》词典对基础特征词进行拓展.其次对样本进行数据预处理,各维度对应的特征词语词频统计与归一化处理,然后运用熵权法计算各品牌个性维度的
网络空间中具有纷繁复杂的多种态势要素、要素属性,以及要素之间的错综关系.对这些信息能否清晰准确地分析并描述,直接关系到所建立的网络空间可视化模型的准确性、完备性、有效性.本文采用知识表示方法,对网络空间中的关键态势信息要素进行描述,主要研究内容包括以下三个方面.首先分析了网络空间态势信息知识的特点,提出了对网络空间态势信息进行知识表示的重要作用.其次研究了基于本体的知识表示理论,分析了采用本体表示
In order to solve the problems of poor portability,complex implemen-tation,and low efficiency in the traditional parameter training of the Belief rule-base,an artificial bee colony algorithm combined
The existing keyword-based search algorithms based on streaming data are hard to meet the needs of users for real-time data processing.To solve this problem,multi-keyword parallel search algorithm for
When smartphones,applications(a.k.a,apps),and app stores have been widely adopted by the billions,an interesting debate emerges: whether and to what extent do device models in uence the behaviors of t
社交网络的蓬勃发展彻底改变了人们的社交行为,也促进了交叉学科的研究.在社交网络中挖掘情感社区,可应用于公共健康、舆情监测等领域.本文作为首个面向中文社交网络进行情感社区检测的研究,以新浪微博为平台建立一种情感社群检测框架,首先融合微博情感表情特征和情感词典,提出基于朴素贝叶斯算法的分类模型SL-SE-NB(Naive Bayes Based Semi-lexicon and Semi-emoji)