Multi-sample clustering decision fusion for distributed target detection in wireless sensor networks

来源 :第六届中国传感器网络学术会议(CWSN 2012) | 被引量 : 0次 | 上传用户:cslml1977
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  In this paper,we revisit the problem of target detection in wireless sensor networks (WSNs).Because that the practical environment of WSNs is very complex,and usually the target signal is mixed with a lot of random noises,the phenomenon impacts the performance of target detection experiment.This paper set forth a new way to improve the system performance.We introduce gather multiple sample when we get the observation signals.After obtaining the samples,we calculate the judgments of each sensor by fusion rule.At last local sensors transfer their judgments to the fusion center.We prove that the method is better than single sample through Monte Carlo experiments because of the full use of the observation signals.
其他文献
Device heterogeneity significantly degrades the localization performance of fingerprinting-based localization,especially in the crowdsourcing-based positioning system.Although manual calibration can r
The passive voice often appears in patent documents but seldom gets the right translation results,which has greatly affected the understanding of the full text.This paper focuses on Chinese analysis a
随着小型无人飞行器的发展,越来越多的研究人员把目光投向于应用领域广阔的空中移动传感器网络。然而,各种已有的部署策略均不适用于本动态性强、环境复杂的新型网络。一方面,空中节点均处于三维的自由活动状态,防止彼此碰撞的同时又需要作为一个整体紧密联系在一起;另一方面,针对具体的覆盖对象,要做到重点区域多重覆盖、一般区域尽可能覆盖的功能目标。因此,需要根据具体任务要求确定部署特点,寻求新的算法和模型。基于带
在无线传感器网络中,加权聚集操作是用户获取检测对象信息的重要手段,这一操作通过赋予各个节点或感知数据不同的权值来确保聚集结果更加真实地反映监测对象。另一方面,考虑到能量的限制、网络的不稳定性,如果能保证误差在用户容忍的范围内,近似加权聚集更加适用于传感器网络。针对感知数据的近似加权聚集问题,提出了一种基于分组抽样的(ε,δ)-近似算法,理论证明算法可以达到任意的精度要求。同时,提出的算法具有良好的
This paper proposes a group of picture (GOP)-aware multipath source routing protocol (GMSR) for real-time moving picture experts group (MPEG) video delivery in mobile ad hoc networks (MANETs).First,as
Due to the limitations of energy,computation and storage for sensors etc,although the wireless sensor networks (WSNs) have been widely deployed in many applications,it is a critical challenge to prese
针对无线传感器网络中,节点受噪声影响导致测量精度下降的问题,提出一种基于滑动窗口内正态记分检验的同质感知数据融合方法。在节点内设置滑动窗口,存储一个周期内的测量值样本数据,并对样本数据进行双样本正态记分检验,从而建立关系矩阵,根据关系矩阵获得最大邻接子图,加权平均子图顶点得到融合估计值。该方法利用了正态记分检验良好的小样本检验特性,在一定程度上抑制了噪声对融合结果的影响。仿真结果表明了该方法的有效
Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks (WSNs).Especially,some sensor network applications need some nodes to affiliate to more t
Fault tolerance is one of the critical characteristic of wireless sensor networks (WSNs).The most of researches on fault-tolerant topologies are concentrated on graphics structure properties.However,s
Due to uncertain running conditions and dynamic fluctuation of network topology,wireless sensor networks (WSNs) always runs in an unexpected open environment.As the theme for the centerpiece,medium ac