【摘 要】
:
超支化聚硅氧烷因不含传统荧光基团具有生物相容性好和细胞毒性低的优点,但其荧光强度较低,限制了其在生物探针、药物传输以及生物成像等领域中的应用。
【机 构】
:
西北工业大学理学院,陕西西安,710129
【出 处】
:
全国第十九届大环化学暨第十一届超分子化学学术讨论会
论文部分内容阅读
超支化聚硅氧烷因不含传统荧光基团具有生物相容性好和细胞毒性低的优点,但其荧光强度较低,限制了其在生物探针、药物传输以及生物成像等领域中的应用。
其他文献
金属有机框架化合物具有特殊的空腔结构与多功能化配体,使其在生物分子识别、选择性催化和光致质子还原等方面展现出丰富的用途.本文利用溶剂热法,以1,3,5-均苯三酰胺对苯甲酸(btcit)和1,3,5-(4-羧基苯基)苯(tcb)为配体与MnCl2作用合成两例以锰为金属基元的三维MOF{[Mn3(btcit)6(H2O)(MeOH)2(DMF)]}n和MOF{[Mn2(tcb)(DMF)]+Cl-}n
单分子磁体(SMMs)是一类可以作为纳米级磁体的分子,可以潜在地应用于信息存储和量子计算,以避免传统铁磁体的超顺磁极限并显著增加现有计算机信息存储的密度1-3.由于其很强的自旋-轨道耦合引起的大的磁各向异性,4f 元素在制备SMMs 时获得了大量的关注.本文合成了两例具有不同β-二酮配体的配合物,[Dy4(dbm)4(L)6(μ3-OH)2]·(1)和[Dy4(acac)4(L)6(μ3-OH)2
化石燃料的排放物是目前最严重的环境污染源,其所含氮有机物燃烧所产生的NOx等是污染大气、形成酸雨和雾霾的主要污染物之一[1-2]。本文通过水热法合成MIL-101(Fe),并通过光沉积法合成Ag/MIL-101(Fe),并将其应用于可见光光催化模拟燃油(100 μg/g 吡啶/正辛烷)脱氮。研究表明Ag/MIL-101(Fe)相对于MIL-101(Fe)可见光光催化模拟燃油脱氮性能有较大的提高。
CdTe量子点由于具有发射谱峰窄且对称、荧光发光效率高、且发射光谱可通过改变其量子点尺寸大小来随意调节等优点,在荧光传感检测及光学发光领域具有广泛的应用.[1]ZIF-8作为一种典型的金属有机框架化合物具有大的孔隙率和比表面积、水稳性好等优点,此外基于孔道尺寸选择性效应ZIF-8薄膜在催化、传感、气体吸附与分离等领域吸引了广泛的研究兴趣.[2]目前基于量子点/MOFs复合薄膜的制备研究相对较少.在
二氧化碳催化加氢直接制取高附加值化学品是实现其资源化利用的重要途径[1,2].采用共沉淀法制备CuO-ZnO/TiO2 系列催化剂,在553K 和2.5 MPa 的反应条件下对其进行了二氧化碳加氢反应制备混合醇的催化反应评价,金红石TiO2 载体与锐钛矿TiO2 载体相比较,前者二氧化碳的转化率较高;而后者醇的选择性较高.不同粒径的钛矿晶型TiO2 作载体时,粒径小的催化剂时空产率、醇的选择性较高
近年来,金属有机框架(MOFs)材料因其独特的多孔结构以及在吸附、分离、催化、功能材料等领域的广泛应用而迅猛发展.然而,目前锕系MOFs的报道相对较少.本课题组以硝酸钍和卟啉四羧酸(H4TCPP)为原料,在溶剂热条件下合成了一例具有三维孔道结构的锕系MOF.此MOF以新型六核钍簇(1+4+1模式)为金属节点,每个钍簇节点周围有16个TCPP4-配体参与配位,而每个TCPP4-配体桥联四个钍簇,形成
随着核能与核技术的发展,铀酰-有机配位聚合物的相关研究受到了人们越来越为广泛的关注.而将有机轮烷作为新型配体的引入不仅能够极大地丰富锕系配位化学,还可为新型金属-有机框架材料的发展提供新思路和新方法.本工作以1,1-(α,ω-二异烟酸乙酯)吡啶-1-二溴盐([CnBPCEt]Br2)为客体分子,与葫芦[6]脲(CB[6])自组装,合成了4种有机准轮烷前驱体[CnBPCEt]Br2@CB[6](图1
由于取代型锗-钒氧簇丰富的结构类型,使其在磁性、催化等方面具有潜在的应用价值.本文通过调控反应条件,利用水热合成法,成功合成一例结构新型的化合物H[Cd(dap)(phen)·(H2O)][Cd(dap)-(phen)]{[Cd(phen)]2[Ge8V12O41(OH)7]}·2H2O.通过X 射线单晶衍射对其结构进行解析,其晶胞参数为a =14.8477(7)nm,b = 16.6471(10
用于锂离子电池的聚阴离子型阴极材料因其结构稳定而备受关注.本工作通过固态反应合成了相对较少研究的LiFeTiO4及其与碳纳米管(CNTs)的复合物.使用多种技术表征了它们的结构,化学组成和形貌.作为阴极材料,LiFeTiO4/CNTs可以提供较高的首次放电容量465.7 mAh/g,并且在0.1 C下100次循环后容量仍可保持在202.4 mAh/g.此外,LiFeTiO4/CNTs还表现出优异的
近年来,MOFs复合材料[1]因其协同效应而被广泛应用于催化研究.为将Pd纳米粒子负载MOFs催化剂的制备工艺化繁为简,并解决纳米粒子快速制备、尺寸调控、粒子聚集等问题.我们探索了以喷雾技术制备无稳定剂加入的单分散贵金属纳米粒子的新方法(Fig 1),成功合成Pd纳米粒子,并通过直接浸渍法[2]负载制得Pd@ Zn-MOF-74.实验发现:常温常压下,该催化剂100%催化苯乙炔后苯乙烯的选择性仍高