Systematic efficiency improvement for Cu2ZnSn(S,Se)4 solar cells by double cation incorporation with

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:bramkon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  The performance of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell is known to be severely limited by the nonradiative recombination near the heterojunction interface and within the bulk of the CZTSSe absorber resulting from abundant recombination centers and limited carrier collection efficiency.Herein,we simultaneously reduce nonradiative recombination by incorporating small amounts of Ge and Cd into the CZTSSe absorber.Incorporation of Ge effectively increases the p-type doping,thus successfully improving the bulk conductance and reducing the recombination in the CZTSSe bulk via enhanced quasi-Fermi level splitting,whilst incorporation of Cd greatly reduces defects near the junction region,enabling larger depletion region width and better carrier collection efficiency.The combined effects of Cd and Ge incorporation give rise to systematic improvement in open-circuit voltage (VOC),short-circuit current density (JSC) and fill factor (FF),enabling a high conversion efficiency of 11.6%.This work highlights the multiple cation incorporation strategy for systematically manipulating the opto-electronic properties of kesterite materials,which may be also applicable to other semiconductors.
其他文献
Polyimide (PI) is the most suitable substrate for flexible CuIn(S,Se)2 (CISSe) solar cell.However,PI has not been used in solution-processed approach because PI cannot tolerate the high temperature of
开路电压损失(Voc-def)大是制约铜锌锡硫(Cu2ZnSn(S,Se)4,CZTSSe)薄膜太阳能电池效率提高的主要因素,探究电压损失的关键原因对进一步提高电池效率至关重要。多元化合物CZTSSe薄膜通常由金属、金属硫(硒)化物或者由它们混合组成的预制膜通过高温硫化/硒化反应获得,其光电性质与预制膜的组成及薄膜生长过程密切相关。而通过溶液法制备CZTSSe,预制膜的组成必然与前驱体化合物在溶液
会议
用1,2-乙二硫醇和1,2-乙二胺混合溶剂溶解金属单质制备Cu2ZnSnS(e)4(CZTSSe)吸收层薄膜,可以成功的用溶液法制备出较高效率的CZTSSe太阳能电池[1].但是与肼溶剂相比,基于此混合溶剂制备的CZTSSe吸收层薄膜仍存在结晶质量较差的问题.吸收层底部较厚的小晶粒层和表面较多的孔洞会明显降低CZTSSe光伏器件的能量转换效率[2,3].在本研究中,我们在CZTSSe吸收层薄膜上表
Cu2ZnSn(S,Se)4(CZTSSe)由于其组成元素价格低廉、对环境友好和光电性能优异而成为一种有前途的光伏材料[1].然而,CZTSSe电池中大量的界面缺陷和体缺陷严重制约着其转换效率的提升,尤其是开路电压.近年来,通过原子层沉积技术生长的氧化铝(ALD-Al2O3)已经被应用在CZTSSe薄膜太阳电池中去改善器件性能、提高转换效率[2].但是,Al2O3钝化层对高效CZTSSe薄膜太阳电
本文将CZTSSe光伏薄膜应用于忆阻器,研究了Mo背电极上制备的CZTSSe薄膜的忆阻性能,发现了CZTSSe薄膜具有共存的双极阻变特性和负阻微分效应,并提出了其阻变行为机理模型.研究表明,Cu/(Zn+Sn)比为0.82条件下的CZTSSe薄膜电阻开关比(HRS/LRS)为27.5,具有较好的非易失性电阻存储特性,其室温下共存的阻变特性与负阻微分效应主要源于外电场作用下肖特基势垒调制的Cu导电丝
By introducing Al-doped ZnO (AZO) layer,the thickness of MoS2 at the back interface of Mo/CZTS is effectively suppressed and the voids are eliminated.The scientific mechanism of improving the back int
The Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) semiconductor is a compelling emerging light harvesting materials for low-cost,environment-benign,and high-efficiency thin-film photovoltaics.The highest power co
Majority carrier mobility is one of the most fundamental and yet important carrier transport parameters determining the optimal device architecture and performance of the emerging antimony chalcogenid
硒化锑和硫化锑等无机Ⅴ2-Ⅵ3族化合物半导体材料展现了巨大的光伏应用潜力, 其中,硒化锑(Sb2Se3)具有1)单一物相结构,2)合适的光学带隙(1.1-1.3eV),3)高吸光系数,4)低毒性,5)高元素丰度等优良特性,被证明是一种优异的吸光层材料.研究表明,Sb2Se3晶体由带状的(Sb4Se6)n构成,(Sb4Se6)n内部由Sb-Se共价键结合,带间通过较弱的范德瓦耳斯力相结合, 在(Sb