配合物粒子构筑的双金属氧化物超电容电极材料性能研究

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:bj20089
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  通过化学转换配合物粒子前驱体的方法获得了几种三元金属氧化物,如MnCo2O4.5,MnNi6O8,MgCo2O4和CuCo2O4纳米粒子.一系列的电化学手段用于检测其电极性能,结果表明MnCo2O4.5纳米结构有着优于其他双金属氧化物的电容量,也预示着该电极材料更适用于中性电解液体系.
其他文献
  随着煤、石油等化石能源的日益枯竭,人类社会正面临着越来越严重的能源危机;在使用化石能源的过程中,所产生的硫化物、氮氧化物以及碳氧化物等污染气体已经给环境带来了巨大
  高性能甲醇氧化电催化剂的制备是直接甲醇燃料电池实用化进程中的一大挑战.本文以高比表面积的介观结构氮掺杂碳纳米笼(hNCNC)为新型载体1,2,利用掺杂氮的配位和锚定作用
  本工作采用化学共沉淀法制备Fe掺杂ZnO复合粉末。通过X射线衍射(XRD)仪、X射线光电子能谱(XPS)仪、扫描电子显微镜(SEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)对复
  在我们的工作中,通过在Cu2ZnSnSe4薄膜太阳能电池吸收层中掺杂Ag减少了Cu/Zn反位缺陷及由缺陷造成的Voc损失,通过一系列的实验研究,并且与不掺杂的Cu2ZnSnSe4薄膜太阳能电池
  本文报道了一种热分解制备多孔ZnO纳米晶的方法,将多孔ZnO 纳米晶经过不同退火温度处理后,研究其结构对染料敏化太阳能电池的光电转换性能的影响。通过扫描电镜(SEM)、透射
  利用以风电为代表的可再生能源作为驱动力电解水制氢是目前最具前景的技术,其中的析氧反应(OER)由于其低效且复杂的四电子转移过程,严重影响其广泛应用[1-2]。在本工作中,我
  AlN具有小(甚至负)的电子亲和势,其一维纳米结构在场发射领域具有潜在应用[1]。但是,AlN的场发射性能受到导电性、屏蔽效应等因素的显著影响[2,3]。本工作利用AlCl3与NH3
  黄铁矿型纳米级的二硫化亚铁是光伏产业中极具潜力的一种材料,同时由于其较高的能量存储能力,而成为一种非常有前景的高性能电池阴极材料.同时,FeS2因其具有较窄的禁带宽
  氮碳材料被认为是能将CO2转化生成CO和H2合成气的有效催化剂,但是其过电位较大、选择性较低、以及活性位点不明确等因素限制它的进一步应用发展[1-3]。
  以硝酸铋、钼酸铵和CTAB为原料,在氢氧化钠存在下160℃水热反应12h,成功制备了BiOBr/Bi2MoO6 微纳结构。研究显示,合成的花状的BiOBr/Bi2MoO6微纳结构在可见光下具有比单