大型空间环境模拟器真空系统配置策略研究

来源 :中国真空学会2016学术年会 | 被引量 : 0次 | 上传用户:likeren1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  空间环境模拟器是用于模拟空间真空、冷黑和空间外热流环境的试验装置。如何对空间环境模拟器真空系统进行配置,实现大空间真空环境的快速获得和保持,是决定空间环境模拟器性能的重要因素。分别对国内外大型空间环境模拟器的真空系统配置进行介绍,并对各自的真空系统配置策略与技术特点进行分析,通过对国内外大型空间环境模拟器真空系统的研究,其真空系统配置策略一般包括:清洁无油真空系统、分子泵系统作过渡抽气、对于因建造成本等原因而使用油扩散泵、油介质机械泵等抽气设备时,为避免油气返流造成对试验环境的污染,一般在真空容器入口前配置液氮冷阱、分子筛吸附阱等工艺手段避免污染效应对航天器造成的污染、对于大型空间环境模拟设备,真空系统一般配置液氮抽气冷板或热沉完成对容器的辅助抽气,对于大型空间环境模拟设备的超高真空环境获得,可通过配置氦抽气冷板的方式获得更高的真空度,如KM6 空间环境试验设备、ESTEC 的LSS 空间环境模拟器均配备了氦制冷抽气冷板,可获得10-6Pa 的超高真空环境。
其他文献
磁重联空间物理装置FLARE 项目由美国普林斯顿大学、加州大学等五大高校和美国能源部下属洛斯阿拉莫斯国家实验室等两大国家实验室联合建设和运行.项目旨在研究空间天体等离子体、聚变等离子体中普遍存在的磁重联现象,其实验数据将支持美国NASA耗资13 亿美元推出的MMS 计划项目,共同开展地球空间磁场演变规律包括极光、太阳风暴等对卫星信号传输的影响.高磁通耦合场线圈系统是保证磁重联装置等离子体激发及高精
中性束注入(Neutral Beam Injection,NBI)是国际上大型磁约束聚变实验装置都在研究和使用的重要辅助加热手段之一[ 1]。真空系统为NBI 装置提供必需的高真空环境,由辅助抽气系统、低温抽气系统和供气系统组成[2]。辅助抽气系统对离子源系统和主真空室进行初级真空抽气,达到离子源起弧放电的要求。低温抽气系统在初级真空环境基础上对主真空室继续进行真空抽气,达到束引出要求的高真空环境
大科学工程项目“稳态强磁场实验装置”的混合磁体将为众多学科领域的科学研究提供强磁场极端实验环境.混合磁体外超导磁体由管内电缆导体(CICC)绕制而成,由氦低温系统提供4.5K 超临界氦进行迫流冷却.氦低温系统主要由氦制冷机、低温分配阀箱和低温传输管线组成,须高真空环境确保其绝热性能.本文将介绍氦低温系统各设备的真空应用、分析低温设备真空度与运行温度的关系、讨论分子泵在磁场下运行的磁屏蔽问题.
中国散裂中子源(CSNS)由产生能量为80MeV 的H-离子直线加速器、直线到环(LRBT)和环到靶(RTBT)的束流输运线、以及积累和加速质子束到1.6GeV 的快循环同步环(RCS)组成.本文描述了CSNS 真空系统各个部分的结构特点、技术要求、设计方案和实验结果.在CSNS 真空系统中采用对氢气抽速大的涡轮分子泵排除负氢离子源的高负载氢气;由于RFQ 腔体流导非常受限,在RFQ 的每个面上都
在磁约束核聚变装置中,真空室是一个非常重要而关键部件,它为磁约束 核聚变等离子体提供洁净真空运行环境空间.KTX 装置是开展磁约束核聚变实验 研究的反场箍缩核聚变装置之一,它有别于托卡马克装置和仿星器核聚变装置. 目前核聚变装置上使用的真空室由多个虾米扇段通过焊接成环形真空室,此类型 真空室焊缝数量多,焊缝距离长,焊接变形控制难度大.根据装置要求,KTX 磁 约束核聚变装置真空室设计为轮胎型结构,
真空室作为磁约束聚变堆主机的核心部件之一,其主要功能是为建立、维持、加热、诊断等离子体提供超高真空环境,并支撑真空室内部部件和其引起的机械负荷,要求具有极高的可靠性.近半个世纪以来,为了更深入地开展聚变能研究,世界各国相继建立了一大批的核聚变实验装置,在建的托卡马克核聚变实验装置的规模也越来越庞大和复杂,对于大型磁约束聚变堆真空室设计、制造关键技术的研究,已经成为国际上对于聚变堆主机研究的热点之一
建立了真空蒸馏分离铝灰中氟化物、氯化物、微量金属的方法。铝灰中氟离子超标,属于危险废物。采用真空蒸馏技术分离其中的氟/氯化合物,实现一次加热分别分离并收集铝灰中的氟化物、氯化物、铝珠,以及部分AlN,产品中的无机氟化物浸出液浓度≤10mg/L,远远低于国家标准(≤50mg/L)。研究了温度、真空度和挥发时间对分离效果的影响。当处理量为100kg/h,最佳分离条件为真空度30-600Pa,蒸馏温度8
总结了近年来作者在有色金属真空冶金方面研究工作的进展,开展了有色金属真空冶金的理论分析,对锡、铅、锌、铋、镉、镁等有色金属真空冶金进行研究,为有色金属真空冶金以及二次有色金属资源的综合利用开拓新途径。
干式真空泵为IC 装备、薄膜电子、制药化工、科研仪器等行业提供洁净的真空环境,其内部稀薄气体传输过程极其复杂。研究具有高可靠性的干泵设计理论,是解决困扰国内真空泵制造业的巨大难题。本文从干泵转子型线设计、稀薄气体输送、多物理场耦合、运转态分析等多个方面,探讨了面向干泵类产品的多维度、运转态集成设计的新方法,开发了参数化转子设计软件,建立多场耦合的分析方法,搭建了干泵理论分析设计平台。本文的研究内容
在非空气应用领域中,使用干式真空泵的最大挑战来自进泵介质,这些介质大部分为非空气未凝汽体,在真空泵内可能发生冷凝与结晶、腐蚀与流蚀、燃烧与爆炸、交联与聚合、碳化与焦化等等理化反应,致使真空泵损坏而不能工作。解决这些难题的关键常常不在真空泵的本身,而在流程设计。解决思路是从化学机理切入,找到形成以上理化反应的条件;用化工原理的方法设计流程,避免或是破坏掉这些理化变化的一个或几个条件,致使反应不可能发