强激光加载金属材料微喷颗粒尺寸分布规律研究

来源 :中国物理学会2016年秋季会议 | 被引量 : 0次 | 上传用户:xiayuanyuan001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  冲击波从金属自由表面卸载时,会产生微物质向外喷射的现象。这种微喷射现象对研究材料在极端条件下的力学响应特性和破坏行为具有非常重要的意义。材料的微喷射形成过程比较复杂,目前该领域的研究还处于探索阶段,材料的微喷总量、微喷颗粒尺寸、和微喷射速度等定量数据还非常稀少。本文将致力于采用强激光驱动冲击加载开展材料微喷过程研究,获取微喷颗粒的尺寸分布规律。
其他文献
对等离子体尾波加速器中以及高能量密度物理中广泛存在的超强电磁场结构的诊断有助于深入理解背后的物理机制。但是,由于这些电磁结构通常具有瞬态(演化时间在fs到ps量级),结构微小(典型尺寸μm到百μm)、强度高(电场GV/m量级,磁场MG量级)等特点,目前缺乏简单有效的诊断工具。等离子体尾波加速器产生的电子束具有超短(束长在fs量级)、相对论性(能量几十到几百MeV)、准单能(能散<~10%)、源尺寸
目前超短超强激光产生微焦点高能轫致辐射源研究,主要采用两种方式:一是飞秒激光器与气体靶相互作用产生的高能尾场加速电子,尾场电子通过高Z转换靶获得1,2;二是皮秒束激光器与固体靶相互作用产生的相对论强流电子束,电子束在固体靶中碰撞输运获得3.中物院激光聚变研究中心在45TW飞秒激光器上开展了基于尾场电子加速的高能轫致辐射源特性表征与透视照相一系列研究.首先,通过喷气等优化尾场电子加速,获得了能量40
近年来,利用超短超强激光与等离子体相互作用产生超短的伽马射线已经越来越成为一个活跃的领域1,2,3,被人们广泛研究。这些高能的伽马射线具有亚皮秒的时间延迟,在超快射线成像等方面具有非常吸引人的应用前景。然而,这些超短的脉冲能谱的测量是一种非常极大地挑战。传统的固态探测器的分辨显然是不合适的,因为这一类探测器4的时间相应要大于亚皮秒时间尺度的脉冲辐射,他们测量单光子能量,在同一个灵敏体积内只能测量一
在神光Ⅱ装置上,采用直接驱动方式,进行了液氘高压物性方面的研究.采用阻抗匹配法,分别以铝和α-石英做标准材料,实验研究了液氘的雨贡纽状态方程,获得了最高压力达100GPa的一组实验数据,实验数据与已有结果符合较好.利用条纹高温仪(SOP),结合反射率的测量,研究了液氘的冲击温度.首先通过石英冲击温度测量数据与已有数据的比较,验证了实验冲击温度测量方法的可靠性,从而保证了液氘冲击温度数据的合理性,实
利用辐射流体力学程序、粒子模拟程序(PIC)以及蒙特卡洛程序细致研究了十拍瓦级超短超强激光与高Z靶作用产生正电子的产额、能谱和角分布等信息。模拟中首先利用辐射流体力学程序模拟激光预脉冲与高Z靶作用产生的预等离子体密度分布;然后利用考虑量子QED效应的PIC程序模拟主激光脉冲与高Z靶预等离子体作用产生的超热电子和高能光子信息;最后利用蒙特卡洛程序模拟高能电子和光子在高Z靶中输运产生正电子的过程。
单色仪作为一种重要的光谱分析和测量仪器,被广泛应用于等离子体光谱诊断、光学元件和仪器的定标实验中1.为了提供一种波长连续可调且无高次谐波干扰的高纯度极紫外单色光,本文以极紫外/软X射线单级衍射光栅[2]作为分光元件,设计了一种无谐波光栅单色仪.单色仪主要由球面镜、平面镜、平面单级衍射光栅及入射、出射狭缝组成,输出光谱范围10-100eV,能谱分辨率E/ΔE大于1000.其中平面镜和平面光栅构成变包
在激光离子加速中,强度超过1018 W/cm2的激光脉冲与物质的相互作用进入了强非线性过程。在整个激光-物质相互作用的过程中,等离子体的分布状态会显著影响加速场的分布以及加速后离子束的品质,而等离子体的分布状态主要由电离过程所决定,因此,考虑电离过程有助于理解整个离子加速过程。本报告应用二维粒子模拟程序,在数值模拟中首次再现了金离子加速的实验结果1,发现了电离动力学对窄谱离子束的形成以及离子的截止
辐射不对称性是惯性约束聚变内爆过程的重要物理量,良好的辐射驱动对称性是实现ICF实验室点火的关键条件之一。事实上,由于有限的驱动激光束数、黑腔构型等因素,黑腔烧蚀获得的X射线辐射场肯定存在一定程度的不均匀性,使得靶丸在压缩时偏离一维球对称状态。通过控制激光条件(双环注入、束间能量转移等)及约束黑腔相关参数可以有效的将辐射不对称性控制在合适水平。
近年来,基于超强激光产生的正电子束由于其脉宽短、能量高及密度高等特性,引起人们的广泛关注。这种特性的正电子束在实验室天体物理、高能物理以及材料科学领域具有巨大的应用潜力。目前,激光正电子束有两种方式,一种是皮秒激光固体靶直接相互作用,另外一种是飞秒激光通过尾场加速产生的电子束与次级靶作用获得正电子。
With the rapid development of laser facilities around the word,table-topγray source from particle acceleration and pairs production based on laser-plasma interaction attract increasing attention these