【摘 要】
:
Hematite(α-Fe2O3)semiconductor has long been used as an active photoanode for photoelectrochemical(PEC)water oxidation reaction.1 In this work,highly active Fe2O3 electrodes were fabricated by a hydro
【机 构】
:
School of Material Science and Engineering,Beihang University,37 Xueyuan Road,Beijing 100191,China
论文部分内容阅读
Hematite(α-Fe2O3)semiconductor has long been used as an active photoanode for photoelectrochemical(PEC)water oxidation reaction.1 In this work,highly active Fe2O3 electrodes were fabricated by a hydrothermal method on the FTO substrate followed by a high-temperature heat treatment.2 The electrodes were characterized before and after the heat treatment process by scanning electron microscope(SEM),transmission electron microscope(TEM)and X-ray diffraction(XRD).It was demonstrated that the product of the hydrothermal process was P-FeOOH,and it was converted to α-Fe2O3 by the heat treatment,2,3 The temperature of the heat treatment process was found to play an important role in the photoactivity of the final product.The higher the temperature,the more complete the transformation was conducted,however,the square resistance of the FTO substrate would drastically rise if the temperature increased to a certain degree.
其他文献
Molybdenum oxides,mainly including MoO3 and MoO2.are attractive materials with potentialapplications in catalysis,sensors and energy storage.Owing to the good electronic conductivity,highstability and
锂离子电池从上世纪九十年代商品化到现在已走过二十余年,随着电池材料和设计的不断优化和改进,锂离子电池已成为我们生活中不可或缺的必需品.在锂离子电池技术迅速发展的二十年间,新体系正极材料(特别是以磷酸铁锂LiFePO4为代表的聚阴离子磷酸盐)的出现使锂离子电池在电动汽车、混合动力汽车和智能电网储能等新领域的应用成为可能,并实现了初步的商业化.但传统的正极材料在电化学过程中往往是单电子/离子反应,严重
Unstable solid-electrolyte interphase(SEI)and particle fracture have been regarded as primary reasonsfor the capacity attenuation of silicon-based anodes [1,2] Pioneering researches have shown that do
在太阳电池制造中,柔性导电衬底具有高的比功率,不易破碎,可折叠、卷曲,便于运输等优点;另外,有机.无机杂化太阳电池结合了有机聚合物材料良好的柔韧性、制备可控性和无机纳米材料优异的光电性能[1],成为研究工作者的研究热点.本文将二者结合起来,即制备基于柔性PET-ITO导电衬底的杂化太阳电池.
锂离子电池已被广泛应用于便携式数码产品,电动汽车等领域.伴随着人们对更高能量密度锂离子发起挑战,具有4400mA/g的比容量的硅负极材料引起越来越多的研究兴趣.硅负极材料在充放电过程中的急剧的体积变化会造成剧烈的循环衰减,单纯的包覆碳等传统制备方法较难彻底解决上述问题.因而人们设计了各种各样的纳米化硅,但其高昂的合成成本,繁琐的流程以及与现有锂电池生产方式不匹配性等因素严重限制了其商业化发展.本实
光电化学分解水制氢和氧是将太阳能转化为可利用的能源中最可行的路线.目前该方向的兴趣是发展具有可见光响应的高活性和更稳定地光电极.许多铋基化合物都具有可见光催化性能,然而这些材料的光电转换性能还未达到实际应用的效率.由于半导体光催化剂的不同晶面具有不同的表面原子和电子结构,因而晶面取向很大程度地影响了其光电化学性能,特别是高活性面的暴露对光电转换效率的提高具有重要的研究意义.
电化学活性(electro-active,redox-active)材料在超级电容器、锂离子电池、电致变色、信息存储、离子传感、分子磁性、分子开关等多个方面具有重要用途.此类材料通常具有双稳态性质.最近,设计合成具有多个稳定氧化还原状态的电化学活性分子材料引起广泛兴趣.多稳态材料在构筑复杂分子逻辑门和提高信息存储密度方面有潜在优势.
进入21世纪以后,环境和能源问题是人类社会面临和亟待解决的关键课题,如何将太阳光高效转化为电能和高效利用于环境治理具有重大意义.我们专心于新型钛基功能材料的研究,在钛基材料新结构、制备方法和应用方面开展创新和应用研究.
近年来,新一代可穿戴电子设备已是不可阻挡的国际热潮.而具有更高柔性、更轻便、结构设计更灵活的移动便携式供电系统将是这一技术潮流的助推器.太阳能电池是一种受空间限制很小的移动式供电器件.基于柔性太阳能电池构建便携式供电系统的是一个重要研究方向.然而,传统柔性光伏电池的研究主要是基于ITO/高分子基底.
A low-cost solar energy conversion technology has been on the agenda for decades to deal with the energy crisis.In such circumstances,dye-sensitized solar cells(DSSCs) were developed by Gr(a)tzel in 1