【摘 要】
:
The intermetallic compound ZrCo has been considered as a promising substitute of uranium for recovery,storage and supply of gaseous hydrogen isotopes especially tritium for ITER application.The temper
【机 构】
:
Science and Technology on surface physics and chemistry Laboratory,P.O.Box 718-35,Mianyang 621907,P.
【出 处】
:
第十五届全国氢能会议暨第7届两岸三地氢能研讨会
论文部分内容阅读
The intermetallic compound ZrCo has been considered as a promising substitute of uranium for recovery,storage and supply of gaseous hydrogen isotopes especially tritium for ITER application.The temperature dependent hydride equilibrium pressure for ZrCo is similar to uranium[1],which could be as low as 10-3Pa at 273K,and the equilibrium pressure reaches around atmospheric pressure at approximately 650K.
其他文献
本文通过高能球磨MgH2和α-Fe的混合物,制备出一种MgH2-Fe的纳米复合材料,并对该材料的物相组成、微观结构及其储氢性能进行深入研究.PCT(pressure-composition-temperature)测试结果表明,MgH2-Fe中的Mg的氢化焓为-66.8kJ/mol H2,相对于纯MgH2中的Mg的氢化焓有所降低,而Mg的吸放氢过程的滞后现象也得到抑制.与此同时,这种纳米复合材料的
In recent years,some of the new series of RE-Mg-Ni-based AB3 and A2B7-type alloys were considered to be the most promising candidates for high energy and high power Ni/MH batteries owing to their high
Mg-based hydrogen storage materials have received considerable interests due to their low cost,great abundance,and high hydrogen storage capacity (7.6 wt %for MgH2,3.6 wt %for Mg2NiH4) [1,2].However,t
Among the various hydrogen storage materials,theMgH2-2LiNH2systemis regarded as a promising candidate for on-board application due tothe moderate operation temperature,good reversibility,and a relativ
TiFe合金是AB型储氢合金的典型代表,由Reilly等首先发现并发表了对其性能的系统性研究成果[1].其活化后在室温下能可逆地吸收大量的氢气,理论值为1.86 %(ω),平衡氢压在室温下为0.3MPa,很接近工业应用,并且价格便宜,资源丰富.感应熔炼法因其具有可以大规模生产,成本低等优点,是目前最常用的制备TiFe基储氢合金的方法[2].
V-based hydrogen storage alloys with body centered cubic structure show promising capacity at ambient condition compared to conventional LaNi5,TiFe alloys.Indeed,V-based solid solutions can absorb as
氢能是未来发展中有前景的新能源之一,可用于氢燃料电池电动汽车。氢燃料电池电动汽车常采用压缩储氢的方式来储存氢能。在快速压缩充气过程中,储氢罐工作压力可高达700bar,并且快速充气所引起的罐内高温会对储氢系统的性能产生很大影响,充气速率的快慢对罐内温度的影响很明显,此外,罐壁的热物性也会影响罐内的温度。本文基于Simulink建立了压缩储氢系统的多区域集总参数模型来模拟快速充气过程中罐内热力学以及
Metal borohydrides,typically NaBH4,and their derivatives,are promising hydrogen storage materials for on-board hydrogen supply [1-3].However,to ensure good hydrogen generation performances,some aspect
储氢罐快速充气对于氢燃料电池电动汽车的推广应用具有十分重要的意义。快速充气所引起的罐内高温会对储氢系统的性能产生很大影响。当罐内温度升高时,其碳纤维外套、铝制内衬以及罐内温度并非相同,所以本文基于Simulink建立了储气罐的集总参数模型来模拟快速充气过程中罐内热力学以及传热过程,并与已有的CFD模型参数进行对比。比较发现集总参数模型得到的各温度曲线跟CFD模型得到的温度变化曲线能够较好地拟合,可
The ammonia complex of magnesium borohydride Mg(BH4)2·2NH3,which contains 16.0 wt. %hydrogen and decomposes starting at 150℃,is a very promising material for hydrogen storage[1].However,the release of