【摘 要】
:
活性物质是由自驱动粒子组成的,能将其他形式的能量(生物能,化学能等)转化为自身机械运动的动能。在许多活性物质系统中,例如细菌,微管等,组成单元是细长的,因此能够出现
【出 处】
:
第十一届全国软物质与生命物质物理学术会议
论文部分内容阅读
活性物质是由自驱动粒子组成的,能将其他形式的能量(生物能,化学能等)转化为自身机械运动的动能。在许多活性物质系统中,例如细菌,微管等,组成单元是细长的,因此能够出现局域的向列相序,这类系统被命名为活性液晶。在过去十年中,活力液晶吸引了很多实验物理学家[1]和理论物理学家[2,3]的关注。然而,尽管前人在此类课题上已经付出了大量努力,实验测量与理论模型还没有做到过系统且完整的定量比对。之所以出现这一现状,一方面的原因是前人使用的数值模型较为繁琐,另外实验研究也忽略了部分建模所需的物理量测量。在这里我们报告了一种由细长细菌组成的新系统,得益于高质量图像数据,我们能够同时测量细菌集群运动的取向和速度场。我们的研究表明,细菌活性液晶体系表现出的复杂时空间动力学,可以用一个简洁的粒子模型描述,而模型中所有重要参数都是可以用实验数据直接确定的。这一研究指出了控制活性液晶体系的核心参数和力学机制。我们的方法可以应用到其他稠密的活性物质体系中,并指出了量化研究活性物质的一种思路。
其他文献
Metabonomes of mammals contain tens of thousands types of metabolites which have many different functions with a huge concentration dynamic range,diverse pr
通过激发RNA 与荧光底物结合后形成的复合物能够产生不同类型的荧光,这种基于RNA 产生荧光的方法在多种生物技术中都扮演者重要作用,比如基因编码的荧光定量技术和活细胞RN
在生理环境中获取单个分子的尺寸对于了解其生物学过程有着重要的意义,比如蛋白或DNA 的结合-解离以及纳米颗粒-蛋白相互作用而形成蛋白冠等过程,它们要求能够实时获取单分
表面活性剂由于其对溶液界面的特殊作用在生活中得到了广泛的应用。由于它在降低液滴表面张力方面的作用,在科学研究中它被广泛用于对接触线的控制之中。我们使用Onsager
海藻酸钠水凝胶因其优异的生物相容性、低的免疫源性及与细胞外基质相似的结构,广泛用于组织工程支架、药物缓释、再生医学等领域[1].针对传统钙离子交联的海藻酸钠水凝
手性分子在人体内发挥着重要的生物学作用,相反手性分子在生命活动中可能起到完全不同的作用。因此,开发一种可以在生物体系中原位、快速、方便且准确的手性识别方法具有重
在很多自然和人工环境中,受限边界内的扩散是常见的物理现象。对于球型粒子而言,这些边界的约束造成熵和流体力学效应已经得到研究[1]。这里,我们在实验上研究了微杆在波状
蛋白质折叠是生命科学领域的核心问题之一.计算机模拟有助于刻画蛋白质折叠的动力学.由于蛋白质需要长时间尺度越过折叠与解折叠态之间的能垒,对折叠过程进行全原子模拟仍
人工合成的自驱动微米马达是一种消耗局域的能量转化为自身运动的一种微型装置,它们在药物输运等方面有很多潜在的应用。双金属马达通过电化学分解环境中的过氧化氢,在马达
微量液体的操控技术给基于液相生化及临床检验带来了革命性的变化,但随之而来的液滴.通过用高疏水性的纳微米级颗粒包裹微量液体形成非浸润式液滴(亦称液体弹珠,liquid m