CN Foam Backbone Loaded with Non-stacking Graphene Nanosheets for High-performance Supercapacitor El

来源 :2015年中西部地区无机化学化工学术研讨会 | 被引量 : 0次 | 上传用户:supperprecom
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Three-dimensional porous carbon-based foams have recently attracted increasing interest owing to their exciting potential in various fields.Herein,hierarchical porous monoliths,CN foam backbone loaded with free graphene sheets,have been prepared.In this method,graphene oxide sheets were firstly loaded on the usual melamine foam that was selected as raw material for CN backbone.
其他文献
Carbon-carbon bond cleavage by means of transition metals has received considerable attentions,which provides new opportunities for the discovery of synthetically useful reactions that are otherwise d
会议
In small molecule drug discovery,difluoromethylene group(CF2) is a popular functional group because it can functionalize as a bioisostere of a carbonyl group or an oxygen atom,and would have significa
会议
Indolo[2,1-α isoquinoline is one of the most attractive frameworks with a wide range of biological and pharmacological activities(Figure 1).1 Herein,we described a visible-light induced formal [4+1] a
会议
本文考虑分数阶累加GM(1,1)模型与GM(1,1)模型间的变换关系,论述分数阶累加GM(1,1)模型的两种形式(白化型FAGM(1,1,W)和内涵型FAGM(1,1,C)).分析两种形式模型的解,从理论上讨论了两个模型解间的相对误差.将两个模型解进行展开,得到时间项因子和常数项,发现两类模型解间的误差主要由时间项因子决定.通过建立时间项因子间相对误差与发展系数和序列长度间的函数关系,定量分析了相
偏好投票选举是由多人共同参与投票过程,制定决策(投票)规则,选用合适的方法集结决策信息(信息集结),选择群体满意方案。Cook和Kress[Management Science36(11)(1990)1302]提出了A data envelopment Model for aggregationpreference ranking(DEA Model).该模型是Borda投票模型的推广,但是它没有
为了全面提高复杂装备费用的合理使用度,构建了复杂装备费用测算的灰色自忆性组合模型,借助自忆性预测技术来提高其预测精度.该模型通过有机耦合自忆性原理与传统灰色模型,综合了两者各自的优势.系统的自忆性方程包含多个时次初始场而不仅是单个时次初始场,从而克服了传统灰色预测模型对初值比较敏感的弱点.对复杂装备费用测算的实例研究结果表明,所提出的灰色自忆性组合模型能够充分利用系统的多个历史资料,可以紧密捕捉系
In this paper, based on the non‐equidistance GM(1,1)Models mechanism, we obtain a conclusionthat the background value is very important to the accuracy of the gray theoretical modeling. Based onnumeri
The photocatalytic hydrogen fuel production by splitting of water using solar energy is a promising clean and renewable route.Since the report of hydrogen evolution through the photoelectrochemical sp
会议
本文通过生物质模板法[1,2]、室温共沉淀法[3]、水热法[4]、溶剂热法[5]、配合物衍生法合成多种过渡金属氧化物[6,7]、磷酸盐[8]、钒酸盐[4]等微纳米材料.通过X 射线粉末衍射、扫描电子显微镜、透射电子显微镜等各类表征手段,分析了这些纳米材料的形成机理,并提出了一定的假设.我们重点研究了这些纳米材料在超级电容器、锂电池、无酶电催化研究.
我们采用高温固相方法合成了一例新型的硼锑酸盐RbSbB2O6,它与KSbB2O6同构,结晶于极性空间群Cc,单斜晶系,晶体学参数:a=11.714(3)(A),b=7.163(2)(A),c=7.410(2)(A),β=125.1(16)°,V=506.71(15)(A)3,Z=4,结构分析表明:其阴离子骨架为三维网状结构,具有Sb3B4七元环形成的沿着c 轴方向的一维孔道和Sb4B2六元环形成的