【摘 要】
:
对于纳米复合Nd2Fe14B/α-Fe合金,目前的实验结果与理论值仍有很大的差距,大量研究表明,晶界结构的不完美是限制其性能提高的重要因素之一.直接铸造法由于其工艺简单、一步成型的优势,有望成为新的永磁钕铁硼的成型工艺,但其合金的晶界结构对磁性能的影响目前仍缺乏研究.
【机 构】
:
华南理工大学材料科学与工程学院,广州 510640
【出 处】
:
第十六届全国磁学和磁性材料会议暨第十七届全国微波磁学会议
论文部分内容阅读
对于纳米复合Nd2Fe14B/α-Fe合金,目前的实验结果与理论值仍有很大的差距,大量研究表明,晶界结构的不完美是限制其性能提高的重要因素之一.直接铸造法由于其工艺简单、一步成型的优势,有望成为新的永磁钕铁硼的成型工艺,但其合金的晶界结构对磁性能的影响目前仍缺乏研究.
其他文献
近年来,A位有序的钙钛矿化合物AA3B4O12备受科研工作者的关注,这源于其特殊的有序结构和广泛的物理性质,例如弱场下的巨磁电阻效应[1],宽温度范围的巨电介质常数[2],温度诱导A–B位电荷转移[3],以及室温下的亚铁磁性质等等.该系列化合物具有相似的晶体结构(Im–3 立方晶格)(图1),因而为系统研究钙钛矿结构中相同(A–A,B–B)或不同位点(A–B)过渡金属离子间的磁耦合提供了一个理想的
近年来,由于无稀土 MnBi 基合金永磁材料,具有价格低、耐腐蚀性好、机械强度高等优点,备受磁学研究者的青睐.当向MnBi 合金中掺杂第三种元素如Fe 时,MnBi 基合金薄膜在常温下就具有高垂直异向性[1]、高自旋极化运输[2]及自旋产生近藤效应,从而表现出较出较好的磁性能.
自新一代多电飞行器的功率系统、离子发动机、空间反应堆等提出工作温度大于400℃的永磁材料需求以来,高温稀土钴永磁材料一直受到关注,研究人员致力于材料的基础研究及其应用开发.国内外高温稀土钴永磁材料Sm(CopFeuCuvZrw)z的成分特征是高钴(p>0.74)、低铁(u≤0.12)、高Z值(z≥7.4),他们的磁体在500℃时的磁能积为小于11MGOe[1-3].
近年来,随着环境问题逐渐被重视,混合动力汽车或纯电动汽车得以迅速发展.因此,为满足相应动力系统的要求以及考虑到重稀土原料的成本因素,无重稀土或低含量重稀土的高性能Nd-Fe-B 磁体的研究逐渐显现重要性.通过以Nd-Fe-B 薄膜为简化的研究体系,可以得到更为直观清晰的微观结构和磁性变化之间的关系,服务Nd-Fe-B 商业磁体的开发和生产.
Nd-Fe-B永磁体自1983年问世以来,由于其优异的磁性能,广泛应用于在混合动力汽车和风力发电等方面[1].由于2010 和2011年稀土价格的暴涨,人们逐渐开始关注La/Ce 等高丰度稀土元素在稀土永磁中的应用,以期获得更高性价比的磁体.最近,许多学者对Ce 取代对烧结磁体的影响进行了研究,取得了一定的进展[2,3],但Ce 取代对快淬粉磁性能与微观结构的变化关系研究较少.
与烧结工艺相比,快淬法表现出其独特的优势:工艺简单、生产设备少、生产周期短等.快淬过程的冷却速率是影响磁粉磁性能和微观结构最重要的因素之一,因而快淬速率对性能的影响有很多研究报道[1,2].由于冷却速率高达近百万度每秒,最佳的快淬速率一般难以控制,因此,实际制备过程中常采用先过淬获得完全或部分非晶条带,然后再经过热处理获得高性能的磁粉.在这种方式下,合适的热处理过程就显得十分重要.目前热处理条件对
一维磁性纳米线具有高磁化率、高矫顽力、低饱和磁矩和低磁耗等特点,在超高密度垂直存储、传感器等方面有非常广泛的应用前景,引起了世界各国研究者的浓厚兴趣.与其它磁性纳米材料相比,Fe-Co 系列合金具有更高的饱和磁化强度和磁导率,但是目前系统地用直流电沉积的方法沉积Fe-Co 系列纳米线的研究还鲜见报导[1].
近年来Fe-Co磁性合金纳米线的研究引起了人们的关注[1].Fe-Co 系列合金具有较高的饱和磁化强度和磁导率,使其在超高密度垂直存储方面有广泛的应用前景.同时少量微合金元素的加入对金属纳米线的磁性能也有一定提升.
HDDR磁粉广泛应用于各向异性粘结磁体的制备,但其磁粉的矫顽力比理论值低很多,从而限制HDDR 磁粉的进一步使用.为了提高其矫顽力,研究者普遍采用重稀土元素Dy 替代Nd2Fe14B 中Nd 元素的方法提高磁粉的矫顽力,但是Dy 元素在自然界含量较少且价格昂贵,不利于稀土元素的平衡开发和NdFeB 磁体的商业应用.于2010年,一些学者通过添加轻稀土合金,如Nd-Cu、Nd-Cu-Al和Pr-Cu
近年来,稀土基金属玻璃因其具有的独特电学与磁学结构逐渐引起研究者的关注.根据Sm-Co相图,只有含60-70at %Sm的二元合金存在深共晶区,易于得到非晶,但其矫顽力很小;而含Sm 小于15at %的合金其共晶温度超过了1300℃,很难得到非晶.我们通过在低钐含量的 Sm-Co 合金中添加B 与M元素,用熔体快淬法制备了不同微结构的非晶薄带.