Photoexcited Carrier Dynamics within Alloyed CdSeTe Colloidal Quantum Dots and at the CdSeTe/TiO2 In

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:bltong861
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Alloying strategy in quantum dots (QDs) has shown great advantages in regulating photophysical properties and improving the performance of photovoltaic devices.Typically,CdSeTe alloy QD is proved to be a superior photosensitizer,and has presented great potential in constructing high-efficient quantum dot solar cells.However,systematic analysis for the carrier dynamics is still lacking.The carrier dynamics within CdSeTe colloidal QDs and at the TiO2/CdSeTe interface has been studied in detail by transient absorption (TA) spectroscopy and photoluminescence (PL) spectroscopy.TA results show that the gradient component of CdSeTe QDs leads to different electronic transition properties distinct from those of their parent binary components.Temperature-dependent time-resolved PL spectra for the CdSeTe/TiO2 demonstrate that PL lifetime decreases from 13.54 to 3.08 ns with increasing temperature from 10 to 300 K.Moreover,the electron transfer rate increases more quickly when temperature exceeds 250 K.In addition,it is confirmed that the crystallization characteristics of TiO2 have a significant impact on the interfacial carrier dynamics.A faster electron transfer from CdSeTe QDs to rutile TiO2 (R-TiO2) has been obtained than that to anatase TiO2 (5.65×108/s vs 3.21×108/s).Both QDs adsorption and electron transfer properties closely dependent on the crystal orientation of R-TiO2 single crystal.CdSeTe QDs attached to the (100) R-TiO2 single crystal surface achieve the fastest electron transfer rate than other R-TiO2 orientations of(111),(110) and (001).
其他文献
学位
学位
在给受体共混溶液中添加DIO是优化PTB7类聚合物太阳能电池形貌和器件性能的重要方法,然而,其背后的光电转换动力学机制仍不是很清楚[1,2].为此,本课题以PTB7∶PC71BM光伏器件为研究对象,采用稳态和时间分辨光谱方法研究了添加DIO和未添加DIO处理器件的光电转换动力学机制.研究发现,加入DIO添加剂制备的PTB7∶PC71BM光伏器件,其光电转换效率可达8.4%,远高于未添加DIO制备器
学位
与高分子阴极修饰层相比,小分子阴极修饰层具有易合成、分散性好、结构可控等优点,但成膜性较差、电导率低.引入高分子材料改善小分子阴极修饰层的电学和力学性能,有助于推进有机光伏技术的实际应用.这里,构筑了一种新型的阴极修饰层:小分子PDINO/高分子PEIE共混薄膜,PDINO∶ PEIE.由于PEIE的弱n型掺杂作用,PDINO∶PEIE比PDINO具有更高的电导率,从而改善了器件空穴/电子迁移率的
学位
MAPbI3是一种经典的金属卤化物钙钛矿,适用于各种光电应用。光激发的载流子扩散和复合是光电器件中的重要指标,晶粒内部和MAPbI3薄膜边界的缺陷会导致大量非辐射复合的能量损失。除缺陷影响外,晶体取向和电子差异对载流子扩散和复合都有影响,晶体的各向异性,在晶体的应用中是一个不能忽略的重要影响因素。通过调整溶液配比生长出同时暴露多组晶面的单晶,利用同一晶体不同晶面可以尽可能的减小测试误差,对研究晶体
浴铜灵(BCP)是一种具有成本优势的小分子阴极修饰材料,可用于有机太阳能电池和钙钛矿太阳能电池中,实现高的器件性能,但是BCP的光热稳定性较差。这里,采用真空蒸镀法,利用4,4-N,N-二咔唑联苯(CBP)和BCP制备了三种阴极修饰层,分别是4 nm BCP、8 nm BCP/2nm CBP、8nm BCP∶CBP(质量比5∶3),并比较了它们的器件性能和稳定性。研究发现,这三个器件的效率(PCE
In recent years,non-fullerene electron acceptors (NFAs) have gained widespread attention in the field of organic photovoltaics.At present,the efficiency of bulk heterojunctions (BHJs) organic solar ce
学位