大面积制备光子晶体荧光增强膜

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:jiangwei_joy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  近年来,利用光子晶体(PC)的带隙调控来增强荧光已经成为一种有效提高量子点(QD)基发光材料的光学性能的方法[1,2]。然而,目前文献中报道的利用旋涂法制备的量子点/光子晶体复合膜的尺寸仍然没有突破几个平方厘米的限制。
其他文献
  具有光响应性能的光敏基团刚性二苯乙烯在光的诱导下会产生順反异构化反应,其顺式和反式构型差异明显,热稳定性好,并且易于修饰。这些特性使得刚性二苯乙烯在光控开关,超分子
  作为最具前景且成本低的第三代太阳能电池代表,量子点敏化太阳能电池(QDSSC)因其敏化剂-量子点(QDs)具有溶液可加工性、吸光范围可调性、高吸收系数以及多激子效应等而被
  近些年来,光电解水这一领域引起了人们的广泛关注.CuWO4作为一种新型n型半导体材料,具有合适的带宽(2.3 eV)以及良好的稳定性,因此在光电解水方面展现了巨大的潜力.然而
  香豆素类氨基酸具有荧光量子产率高,Stoke’s位移大,体积较小,并且对外界pH及溶剂极性变化很敏感,可以较好地满足生物学研究中荧光标记的需求.Peter G.Schultz研究组通过
  近年来,社会安全问题被越来越多的人关注,因此检测爆炸物简单有效的材料就变得十分需要。常规爆炸物主要含有2,4,6-三硝基甲苯(TNT)。本文以咔唑构建了2种聚合物:线性聚合
  带有巯基的氨基酸如半胱氨酸、高半胱氨酸和谷胱甘肽在多种生理和病理过程中具有重要的作用[1]。由于高半胱氨酸和半胱氨酸具有相似的化学结构和反应活性,高半胱氨酸的高
  将能量大但能量密度低、不易储存和运输的太阳能转变为能量密度高、易储存和运输的化学能源加以利用,是解决人类能源问题的最佳途径之一[1]。其中,光电解水制氢气反应受到
  近年来,氢化TiO2 因其独特的光电性质,在光催化、微波吸收、燃料电池等领域具有潜在的应用价值[1]。光催化还原CO2 能够实现可再生能源作用下碳资源的大循环,对解决能源与环
  光催化技术作为一项有着重要应用前景的绿色技术,被广泛用来处理废水。目前金属有机骨架材料(MOFs)凭借其形貌可控、结构多样、热稳定性高及比表面积大等优点被广泛研究其
  光动力治疗是一种结合光、光敏剂、氧气于一体的非入侵式的癌症治疗手段。卟啉类衍生物是一种性能优越的光敏剂。以卟啉为母体,制备了一种新型锌卟啉。通过核磁共振谱和高