Efficient Empirical Likelihood Inference in Partial Linear Models for Longitudinal Data

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:chenghongminghao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  In analyzing longitudinal data,within-subject correlations are a major factor that affects statistical efficiency.Working with a partially linear model for longitudinal data,we consider a subject-wise empirical likelihood based method that takes the within-subject correlations into con-sideration to estimate the model parameters efficiently.
其他文献
Most analyses of accelerated life test(ALT)ignore random effects even if information is available to estimate these effects because of difficulties in the traditional frequentist analysis methods.Igno
We consider the semi-competing risks situation where a terminal event(e.g.death)censors a non-terminal event(e.g.disease recurrence),but not vice versa.
We consider the challenges in modeling and estimating large-scale functional brain connectivity with a hierarchical and modular structure from high-dimensional functional magnetic resonance imaging(fM
Matrix completion is a fundamental machine learning problem with wide applications in collaborative filtering and recommender systems.
Let {Xi}ni =1 be i.i.d.random variables with a common distribution function F.Suppose that F belongs to the Weibull domain of attraction with a finite endpoint θ.
In this talk,we propose a factor-adjusted multiple testing(FAT)procedure based on factor-adjusted p-values in a linear factor model involving some observable and unobservable factors,for the purpose o
Transcription factors(TFs)bind to specific DNA sequence motifs.Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor gr
Let {Xi,i≥ 1} be i.i.d.Rd-valued random vectors attracted to operator semi-stable laws and write Sn =∑n i=1 Xi.This paper investigates precise large deviations for both the partial sums Sn and the ran
会议
Two-sample multiple testing has a wide range of applications.The conventional practice is to first reduce the original observations to a vector of p-values and then choose a cutoff to adjust for multi
Nonignorable nonresponse presents a great challenge in statistical analysis since the nonresponse mechanism/propensity depends on missing data and it is often not identifiable without any further assu