论文部分内容阅读
目前,淡水资源短缺已成为制约我们社会发展和进步的瓶颈,海水淡化技术是解决这一问题的有效途径。热法海水淡化因其自身优点成为海水淡化主流技术之一,水电联产技术的出现,以汽轮机的低压缸抽汽作为热法海水淡化的加热蒸汽,大幅降低了海水淡化的成本。但结垢问题是困扰热法海水淡化技术的主要问题。多相流蒸发技术将固体颗粒加入到蒸发器中,不仅可以起到强化传热和防除垢的作用,同时能提高造水比。本文将多相流蒸发器应用到水电联产中,可以解决沿海电厂的自身用水问题,得到的高浓度海水也可以作为产盐原料,在浓海水处理提供一种有效途径。本文基于300MW凝器机组与多相流蒸发海水淡化装置组成水电联产系统,建立了抽汽的等效焓降模型,汽轮机变工况、多相流蒸发器、闪蒸罐、冷凝器和蒸汽喷射器在内的水电联产多相流蒸发海水淡化系统的数学模型。模型中考虑了热力损失、压力损失、盐水浓度变化引起的温差损失。此外,以系统的单位产量淡水成本最小为目标函数建立了针对该系统的优化模型。以上数学模型及优化模型的求解均在MATLAB程序下完成。针对基于四效顺流多相流蒸发器的水电联产海水淡化系统进行热力学性能分析,用汽轮机组热力系统的变工况理论,利用等效焓降法对凝器机组热力系统进行制水能量成本进行分析,并在汽轮机组的不同工况下针对TVC抽汽位置、固体颗粒体积分率、加热管入口处液体速度、浓缩比等不同方面,对系统的热力学性能进和经济性行了分析。计算结果表明,在同一抽汽口的同一工况下,制水电耗量随着TVC抽汽位置的后移逐渐升高,造水比随着TVC抽汽位置的后移逐渐减小。传热面积随着TVC抽汽位置的后移而增大,淡水成本也逐渐增大。固体颗粒体积分率的增大、加热管入口处液体速度的增加、浓缩比的提高均能提高造水比,降低制水电耗量和蒸发面积,降低淡水成本。利用“黑箱”模型对多相流蒸发海水淡化系统的各部分进行了?平衡计算,考察了在不同固体颗粒体积分率、不同加热管入口处液体速度、不同浓缩比下蒸发系统各部分的?损失,结果表明,固体颗粒体积分率、加热管入口处液体速度、浓缩比的增加均能降低蒸发系统的总?损失,?损失最大发生在冷凝器处继而是蒸汽喷射器。