论文部分内容阅读
Cu-Pb-Sn合金具有高强度、高塑性及良好的减摩性能,因此,被用于滑动轴承的轴承合金层。但是,随着军事及工业的发展,坦克、装甲车及汽车等的发动机转速及承载力不断提高,轴承合金需要承受更高的载荷和具备更好的减摩性,因此需要在钢背/轴承合金表面施镀减摩镀层。但是,由于条件限制,如果不能及时镀膜,铜基轴承合金易发生氧化,氧化产物会阻碍镀层与轴承合金的结合,导致结合力变差,影响镀膜质量及其应用。首先,本文研究了 Cu-Pb-Sn轴承合金在25℃、180℃、300℃、500℃、700℃下的氧化动力学。其次,对氧化后的Cu-Pb-Sn合金表面进行化学清洗和辉光等离子清洗,研究不同清洗工艺对表面形貌及去氧化程度的影响。最后,在清洗后的材料表面采用磁控溅射技术制备AlSn20减摩镀层,探究不同清洗工艺对AlSn20镀层组织及性能的影响。采用扫描电子显微镜、透射电子显微镜及白光干涉仪分别对氧化物及镀层的表面形貌、截面形貌及三维形貌进行观察;采用X射线衍射仪对氧化产物的物相进行分析;采用维氏硬度计对减摩镀层硬度进行检测,并运用划痕附着力测试仪及销盘摩擦磨损试验机对镀层的膜基结合力及摩擦学性能进行检测,同时,采用高温摩擦磨损试验机对摩擦磨损试验后磨痕宽度及深度进行检测。研究结果表明:(1)Cu-Pb-Sn轴承合金氧化过程中,Cu元素和Sn元素分别被氧化为CuO、CuO2和SnO2。在500℃时Pb会被氧化为Pb3O4,其余温度氧化产物为PbO。氧化时,Pb在合金内部容易形成扩散通道,在表面形成PbO。当氧化温度不同,PbO的表面形态也不同。当温度为25℃时,没有明显变化;180℃和300℃时,PbO表面形态为球形;500℃时,除了球形以外,还有许多Pb的细晶须分布在CuO上;700℃时,合金表面覆盖有小颗粒状PbO及大的球形PbO。当温度为25℃时,Cu-Pb-Sn合金的氧化重量增加曲线近似为线性方程;当温度在180℃-700℃时,Cu-Pb-Sn合金氧化增重曲线符合抛物线方程。(2)通过化学清洗,可有效去除试样表面的氧化物,同时改善表面形貌,提高镀层与基体之间的结合强度,增加镀层性能。随反应温度升高,试样表面含氧量先增加后减小;随H2SO4浓度的增加,试样表面含氧量逐渐降低,当反应温度为50℃,H2SO4浓度为15%时,其表面含氧量有最小值为2.3%。化学清洗后进行表面磁控溅射镀膜,研究发现:当化学清洗后表面粗糙度为147.90nm时,即清洗温度为50℃,H2SO4浓度为12%时,AlSn20镀层致密性与完整性最好,表面粗糙度最小,为1.616 μm,此时硬度值有最大值为94.4 HV0.3,膜基结合力达到最大值为68 N,摩擦系数最低为0.39,磨痕宽度为562.48μm,磨痕深度为28.4 μm,其磨损机制主要为磨粒磨损。(3)当采用真空等离子辉光清洗时,研究发现:清洗偏压为-600V时,表面最为平整,表面粗糙度最低为89.52 nm;当清洗偏压为-800 V时,表面含氧量最小,平均含氧量为0.7%,清洗偏压越大,去氧化程度越好,但偏压过大会使被表面原子溅出产生刻蚀孔洞,表面性能降低。等离子清洗后,采用磁控溅射技术镀膜后发现:随清洗偏压的增加,AlSn20镀层表面粗糙度呈先减小后增大的趋势,当偏压为-600 V时,试样表面粗糙度值最小,为1.762 μm;AlSn20镀层表面硬度与膜基结合力呈先增大后减小的趋势,当清洗偏压为-650 V时,镀层硬度达到最大值为96.4 HV0.3,膜基结合力达到最高值为57 N;AlSn20镀层表面摩擦系数先减小后增大,当清洗偏压为-650 V时,摩擦系数的平均值均达到最小值0.37,且此时磨痕表面最为平整,磨痕宽度最小为561.96 μm,磨痕深度为28.5μm,主要磨损机制为磨粒磨损。