【摘 要】
:
为检测复杂的海洋环境,通常将多种低功耗传感器放置在海洋中。海洋传感器大多采用较为传统的化学电池供电,传统化学电池存在供电持久性差、环境清洁性差、体积大等缺点。海洋环境不同于陆地环境,传感器并不便于回收。所以,一种可用于海洋低功耗传感器供电的新型供电装置成为近些年国内外学者研究的重点。海洋同空气一样,蕴含着巨大的振动能量。其中,海洋中的卡门涡街效应作为一种规律已知的振动方式,便能使压电材料发生振动而
论文部分内容阅读
为检测复杂的海洋环境,通常将多种低功耗传感器放置在海洋中。海洋传感器大多采用较为传统的化学电池供电,传统化学电池存在供电持久性差、环境清洁性差、体积大等缺点。海洋环境不同于陆地环境,传感器并不便于回收。所以,一种可用于海洋低功耗传感器供电的新型供电装置成为近些年国内外学者研究的重点。海洋同空气一样,蕴含着巨大的振动能量。其中,海洋中的卡门涡街效应作为一种规律已知的振动方式,便能使压电材料发生振动而产生能量。同时,压电振动俘能作为一种供电持久、清洁无污染的技术,具有广阔的发展前景。本文首先分析了压电俘能器的研究背景及国内外研究现状,涡激振动理论的发展与研究现状,特别是涡激振动俘能装置的国内外研究现状。在总结国内外学者研究优缺点的基础上,提出一种基于卡门涡街的分段式压电俘能装置。其次,介绍了压电效应与压电材料的基本参数,正逆压电效应有关的四种压电方程,为后面压电振子的仿真提供理论基础。根据压电理论,建立了悬臂梁式单层压电振子模型及等效电路模型。对压电悬臂梁基板厚度与压电振子的输出电压、输出功率关系进行分析,并对外负载与输出功率的关系进行分析。然后,构建了流体力学控制方程及与圆柱绕流有关的无量纲数,简述了计算流体力学以及离散方程和湍流模型。在此基础上进行了圆柱绕流模型建模及仿真,并将仿真结果与之前学者的研究成果进行比对和分析。最后,分析了流固耦合理论与动网格理论。对卡门涡街作用下的柔性板进行建模与仿真,对柔性板的平均升力系数进行分析。进而对卡门涡街作用下压电振子进行建模与仿真,得到压电振子输出电压随不同长度的变化,以及输出功率随压电振子长度与外负载的变化,并得到了不同长度下压电振子不同时刻的挠度曲线。根据挠度曲线对压电振子进行分段,研究压电振子输出电压随不同长度的变化,以及输出功率随压电振子长度与外负载的变化,分析与未分段压电振子数据的异同点,得出本文结论。
其他文献
家蚕(Bombyx mori),也叫桑蚕,属于无脊椎动物,昆虫纲,鳞翅目,家蚕蛾科。当家蚕遇到外界的物理、化学和生物等因素的刺激后,其血淋巴中很快出现一系列免疫物质如抗菌蛋白、抗菌多肽、溶菌酶及凝集素等抗菌物质以对抗外源微生物的人侵,而这些抗菌物质可望成为一类新的高效低毒的抗菌、抗病毒和抗癌新药,为了研究家蚕皮肤中是否存在这种抗菌物质或者具有其它药用价值的组分,本论文主要检测了家蚕皮肤中的胰蛋白酶
随着对清洁,可持续和可靠的储能设备的需求的不断增长,设计和组装具备超高功率密度,高速充放电速率和长循环寿命的超级电容器这一任务吸引了人们更多的关注,但同时也面临着巨大的挑战。然而,它们无法进一步商业化仍然是由于相对其较低的能量密度,而这与电极材料本身的结构和电化学性能有着莫大的联系。因此,探索和制备具有优质结构的电极材料,对提高SCs的电化学性能起着关键作用。本论文中,我们设计并制备了一种Ni-M
目的动脉粥样硬化性心脏病是导致人类发病率和死亡率逐年增高的心血管疾病之一。氧化型低密度脂蛋白在粥样硬化斑块形成的过程中发挥着不可忽视的作用。随着免疫治疗在肿瘤领域取得的重大突破,越来越多的科研人员将心血管疾病的研究方向致力于免疫学的方法,探寻一种能与粥样硬化斑块成分特异性结合的抗体,以求能达到诊断及治疗动脉粥样硬化性疾病的效果。本研究旨在筛选出一种对氧化型低密度脂蛋白具有高度特异性的抗体,初步探索
随着无线传感器的发展,其传统化学电池供能方式存在的诸多问题逐渐暴露出来。为解决这一问题,许多专家学者将目光转向了其他供能方式,包括太阳能供电、风能供电、振动能供电等方式。振动能在环境中广泛存在,压电式振动俘能装置因其能量密度大、易于集成而受到广泛关注。环境中的振动往往具有宽频带和随机性的特点,利用磁力产生非线性来拓宽工作频带是目前有效的方式之一。只有当激励加速度水平达到一定程度时,传统双稳态系统才
随着微电子技术和通信技术的广泛普及和应用,无线传感器和微电子器件的能源供给需求愈发显著。以传统化学电池为代表的供能设备由于其尺寸和重量、维修和更换、环境污染等问题,无法有效满足无线传感器网络长时间可靠供能的工作要求。在此背景下,以压电振动能量收集为代表的环境能量收集技术成为研究重点。本文在以往压电振动能量收集技术研究的基础上,针对低频范围和低激励水平下能量收集效率低的问题,在M形梁振动能量收集装置
为探究内蒙古多年草地生长季净初级生产力(NPP)的变化及其与干旱的关系以及北方草地降水利用率(RUE)的分布格局,本文基于BEPS模型模拟的NPP、标准化降水蒸散指数(SPEI)、草地降水利用率,对2001-2015年内蒙古草地NPP和SPEI的时空变化特征以及对2016-2018年北方草地RUE分布格局进行研究与分析。本论文的主要发现为:(1)2001-2015年内蒙古草地生长季NPP整体上呈自
高能量密度的锂电池由于不存在记忆效应而拥有较长寿命,已经成为一种广受关注的高效、清洁能源。然而目前商用锂电池使用的有机电解液存在着诸多安全弊端,严重阻碍了锂电池的发展,为此固态电解质成为了解决这一问题的关键策略。聚氧化乙烯(PEO)是发现最早、研究最成熟的一类固态电解质材料。目前研究者们针对PEO基固态电解质改性策略主要集中于室温离子电导率以及电化学窗口的提升,而对其高温应用的安全性却研究不足。随
固体氧化物燃料电池(SOFCs)是从燃料中产生电能的最有效的装置。其应用的限制是由于传统SOFC材料的高操作温度。固体氧化物燃料电池在降低工作温度方面取得了进展,但稳定性和电子电导率问题仍然存在。电池在一定温度下的功率问题也是主要考虑的问题,其中固体氧化物燃料电池在电解质材料方面的选择主要就是以SDC、YSZ等为代表的氧离子导体的电池和BCZY为代表的质子导体的电池,与此同时在阴极材料方面的选择倒
随着汽车行业的蓬勃发展,汽车轮胎的需求与日俱增,导致废旧轮胎的产出逐年增加。长期大量堆放废旧轮胎会导致资源浪费和环境污染,但只要利用得当也可开发巨大的应用价值。由于废旧轮胎结构与成分,橡胶分子链的交联网状结构以及各种添加助剂,导致废旧轮胎再利用困难。若可以通过简单的方法回收废旧轮胎,将废旧轮胎应用在储能领域,令其作为碳源制备锂离子电池负极材料,这对于废旧轮胎的再利用具有极大的突破性与关键性。由于碳
有机太阳能电池因其具有质量轻、成本低、柔韧性好、可溶液法大面积制备等优势,越来越受到人们的广泛关注,成为光伏领域中的研究热点之一。经过几十年的发展,目前单节有机太阳能电池的能量转换效率已经突破了18%,显示出了可商业化应用的广阔前景。其中,大量高效聚合物给体材料的开发是推动该领域发展的重要力量之一。在提升聚合物给体材料光伏性能的分子设计策略中,在聚合物中引入氟原子和拓展聚合物的共轭体系是两种有效的